**A First Course in Complex Analysis**

by M. Beck, G. Marchesi, D. Pixton

**Publisher**: San Francisco State University 2012**Number of pages**: 215

**Description**:

These are the lecture notes of a one-semester undergraduate course which we taught at SUNY Binghamton. For many of our students, Complex Analysis is their first rigorous analysis (if not mathematics) class they take, and these notes reflect this very much. We tried to rely on as few concepts from real analysis as possible. In particular, series and sequences are treated 'from scratch'. This also has the (maybe disadvantageous) consequence that power series are introduced very late in the course.

Download or read it online for free here:

**Download link**

(multiple formats)

Download mirrors:**Mirror 1**

## Similar books

**Complex Analysis**

by

**C. McMullen**-

**Harvard University**

This course covers some basic material on both the geometric and analytic aspects of complex analysis in one variable. Prerequisites: Background in real analysis and basic differential topology, and a first course in complex analysis.

(

**9762**views)

**Lectures on Stratification of Complex Analytic Sets**

by

**M.-H. Schwartz**-

**Tata Institute of Fundamental Research**

Contents: Preliminaries; Some theorems on stratification; Whitney's Theorems (Tangent Cones, Wings, The singular set Sa); Whitney Stratifications and pseudofibre bundles (Pseudo fibre spaces, Obstructions in pseudo-fibrations, etc.).

(

**6398**views)

**Lectures on the Mean-Value and Omega Theorems for the Riemann Zeta-Function**

by

**K. Ramachandra**-

**Tata Institute of Fundamental Research**

This short book is a text on the mean-value and omega theorems for the Riemann Zeta-function. The author includes discussion of some fundamental theorems on Titchmarsh series and applications, and Titchmarsh's Phenomenon.

(

**6801**views)

**Complex Integration and Cauchy's Theorem**

by

**G. N. Watson**-

**Cambridge University Press**

This brief monograph offers a single-volume compilation of propositions employed in proofs of Cauchy's theorem. Developing an arithmetical basis that avoids geometrical intuitions, Watson also provides a brief account of the various applications ...

(

**6456**views)