**The Homology of Iterated Loop Spaces**

by F. R. Cohen, T. J. Lada, P. J. May

**Publisher**: Springer 2009**ISBN/ASIN**: 354007984X**ISBN-13**: 9783540079842**Number of pages**: 490

**Description**:

This volume is a collection of five papers. The first four together give a thorough treatment of homology operations and of their application to the calculation of, and analysis of internal structure in, the homologies of various spaces of interest. The last studies an up to homotopy notion of an algebra over a monad and the role of this notion in the theory of iterated loop spaces.

Download or read it online for free here:

**Download link**

(15MB, PDF)

## Similar books

**Geometry of 2D Topological Field Theories**

by

**Boris Dubrovin**-

**arXiv**

These lecture notes are devoted to the theory of equations of associativity describing geometry of moduli spaces of 2D topological field theories. Topics: WDVV equations and Frobenius manifolds; Polynomial solutions of WDVV; Symmetries of WDVV; etc.

(

**12959**views)

**E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra**

by

**J. P. May**-

**Springer**

The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.

(

**11843**views)

**Lectures on Etale Cohomology**

by

**J. S. Milne**

These are the notes for a course taught at the University of Michigan in 1989 and 1998. The emphasis is on heuristic arguments rather than formal proofs and on varieties rather than schemes. The notes also discuss the proof of the Weil conjectures.

(

**9246**views)

**Differential Forms and Cohomology: Course**

by

**Peter Saveliev**-

**Intelligent Perception**

Differential forms provide a modern view of calculus. They also give you a start with algebraic topology in the sense that one can extract topological information about a manifold from its space of differential forms. It is called cohomology.

(

**8415**views)