Logo

The Homology of Iterated Loop Spaces

Large book cover: The Homology of Iterated Loop Spaces

The Homology of Iterated Loop Spaces
by

Publisher: Springer
ISBN/ASIN: 354007984X
ISBN-13: 9783540079842
Number of pages: 490

Description:
This volume is a collection of five papers. The first four together give a thorough treatment of homology operations and of their application to the calculation of, and analysis of internal structure in, the homologies of various spaces of interest. The last studies an up to homotopy notion of an algebra over a monad and the role of this notion in the theory of iterated loop spaces.

Home page url

Download or read it online for free here:
Download link
(15MB, PDF)

Similar books

Book cover: The Adams-Novikov Spectral Sequence and the Homotopy Groups of SpheresThe Adams-Novikov Spectral Sequence and the Homotopy Groups of Spheres
by - Northwestern University
Contents: The Adams spectral sequence; Classical calculations; The Adams-Novikov Spectral Sequence; Complex oriented homology theories; The height filtration; The chromatic decomposition; Change of rings; The Morava stabilizer group.
(7158 views)
Book cover: Modern Algebraic TopologyModern Algebraic Topology
by - Macmillan
Contents: Preliminary algebraic background; Chain relationships; The absolute homology groups and basic examples; Relative omology modules; Manifolds and fixed cells; Omology exact sequences; Simplicial methods and inverse and direct limits; etc.
(2237 views)
Book cover: A Concise Course in Algebraic TopologyA Concise Course in Algebraic Topology
by - University Of Chicago Press
This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics. Most chapters end with problems that further explore and refine the concepts presented.
(12952 views)
Book cover: Topics in topology: The signature theorem and some of its applicationsTopics in topology: The signature theorem and some of its applications
by - University of Notre Dame
The author discusses several exciting topological developments which radically changed the way we think about many issues. Topics covered: Poincare duality, Thom isomorphism, Euler, Chern and Pontryagin classes, cobordisms groups, signature formula.
(4979 views)