Logo

CDBooK: Introduction to Vassiliev Knot invariants

Small book cover: CDBooK: Introduction to Vassiliev Knot invariants

CDBooK: Introduction to Vassiliev Knot invariants
by

Publisher: Ohio State Universit
Number of pages: 460

Description:
This text provides an introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. It is intended for readers with no or little background in this area, and we care more about a clear explanation of the basic notions and constructions than about widening the exposition to more recent and more advanced material.

Home page url

Download or read it online for free here:
Download link
(6.7MB, PDF)

Similar books

Book cover: Notes on String TopologyNotes on String Topology
by - arXiv
This paper is an exposition of the new subject of String Topology. We present an introduction to this exciting new area, as well as a survey of some of the latest developments, and our views about future directions of research.
(6305 views)
Book cover: A Primer on Mapping Class GroupsA Primer on Mapping Class Groups
by - Princeton University Press
Our goal in this book is to explain as many important theorems, examples, and techniques as possible, as quickly and directly as possible, while at the same time giving (nearly) full details and keeping the text (nearly) selfcontained.
(6326 views)
Book cover: Math That Makes You Go WowMath That Makes You Go Wow
by - Ohio State University
This is an innovative project by a group of Yale undergraduates: A Multi-Disciplinary Exploration of Non-Orientable Surfaces. The course is designed to be included as a short segment in a late middle school or early high school math course.
(10160 views)
Book cover: Algebraic and Geometric SurgeryAlgebraic and Geometric Surgery
by - Oxford University Press
Surgery theory is the standard method for the classification of high-dimensional manifolds, where high means 5 or more. This book aims to be an entry point to surgery theory for a reader who already has some background in topology.
(5186 views)