**Homeomorphisms in Analysis**

by Casper Goffman, at al.

**Publisher**: American Mathematical Society 1997**ISBN/ASIN**: 0821806149**ISBN-13**: 9780821806142**Number of pages**: 216

**Description**:

This book features the interplay of two main branches of mathematics: topology and real analysis. The material of the book is largely contained in the research publications of the authors and their students from the past 50 years. Parts of analysis are touched upon in a unique way, for example, Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, bounded variation in the sense of Cesari, and various theorems on Fourier series and generalized bounded variation of a function.

Download or read it online for free here:

**Download link**

(preview available)

## Similar books

**Real Variables: With Basic Metric Space Topology**

by

**Robert B. Ash**-

**Institute of Electrical & Electronics Engineering**

A text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature. The subject matter is fundamental for more advanced mathematical work.

(

**55942**views)

**Topology**

by

**David Wilkins**-

**Trinity College, Dublin**

The lecture notes for course 212 (Topology), taught at Trinity College, Dublin. Topics covered: Limits and Continuity, Open and Closed Sets, Metric Spaces, Topological Spaces, Normed Vector Spaces and Functional Analysis, Topology in the Plane.

(

**7168**views)

**Introduction to Topology**

by

**Alex Kuronya**

Contents: Basic concepts; Constructing topologies; Connectedness; Separation axioms and the Hausdorff property; Compactness and its relatives; Quotient spaces; Homotopy; The fundamental group and some applications; Covering spaces; etc.

(

**7431**views)

**Point-Set Topology: Course**

by

**Peter Saveliev**-

**Intelligent Perception**

This is an introductory, one semester course on point-set topology and applications. Topics: topologies, separation axioms, connectedness, compactness, continuity, metric spaces. Intended for advanced undergraduate and beginning graduate students.

(

**4390**views)