**Nonstandard Analysis in Topology**

by Sergio Salbany, Todor Todorov

**Publisher**: arXiv 2011**Number of pages**: 48

**Description**:

We present Nonstandard Analysis in the framework of the superstructure of a given infinite set. We also present several applications of this axiomatic approach to point-set topology. Some of the topological topics such as the Hewitt real compactification and the nonstandard characterization of the sober spaces seem to be new in the literature on nonstandard analysis.

Download or read it online for free here:

**Download link**

(380KB, PDF)

## Similar books

**Notes on Introductory Point-Set Topology**

by

**Allen Hatcher**-

**Cornell University**

These are lecture notes from the first part of an undergraduate course in 2005, covering just the most basic things. From the table of contents: Basic Point-Set Topology; Connectedness; Compactness; Quotient Spaces; Exercises.

(

**3413**views)

**Introduction to Topology**

by

**Alex Kuronya**

Contents: Basic concepts; Constructing topologies; Connectedness; Separation axioms and the Hausdorff property; Compactness and its relatives; Quotient spaces; Homotopy; The fundamental group and some applications; Covering spaces; etc.

(

**6524**views)

**Metric and Topological Spaces**

by

**T. W. Körner**-

**University of Cambridge**

Contents: What is a metric?; Examples of metric spaces; Continuity and open sets for metric spaces; Closed sets for metric spaces; Topological spaces; Interior and closure; More on topological structures; Hausdorff spaces; Compactness; etc.

(

**2959**views)

**Homeomorphisms in Analysis**

by

**Casper Goffman, at al.**-

**American Mathematical Society**

This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.

(

**9774**views)