**Current Topics in Complex Algebraic Geometry**

by Herbert Clemens, János Kollár

**Publisher**: Cambridge University Press 1996**ISBN/ASIN**: 0521562449**ISBN-13**: 9780521562447**Number of pages**: 172

**Description**:

The 1992/93 academic year at the Mathematical Sciences Research Institute was devoted to Complex Algebraic Geometry. This volume collects survey articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change. To put it succinctly, algebraic geometry has opened up to ideas and connections from other fields that have traditionally been far away.

Download or read it online for free here:

**Download link**

(DVI/PDF)

## Similar books

**Classical Algebraic Geometry: A Modern View**

by

**Igor V. Dolgachev**-

**Cambridge University Press**

The main purpose of the present treatise is to give an account of some of the topics in algebraic geometry which while having occupied the minds of many mathematicians in previous generations have fallen out of fashion in modern times.

(

**4857**views)

**Mixed Motives**

by

**Marc Levine**-

**American Mathematical Society**

This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.

(

**10558**views)

**Ample Subvarieties of Algebraic Varieties**

by

**Robin Hartshorne**-

**Springer**

These notes are an enlarged version of a three-month course of lectures. Their style is informal. I hope they will serve as an introduction to some current research topics, for students who have had a one year course in modern algebraic geometry.

(

**3390**views)

**Lectures on Algebraic Groups**

by

**Alexander Kleshchev**-

**University of Oregon**

Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.

(

**7868**views)