Logo

A Concise Course in Algebraic Topology

Large book cover: A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology
by

Publisher: University Of Chicago Press
ISBN/ASIN: 0226511839
ISBN-13: 9780226511832
Number of pages: 251

Description:
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields.

Home page url

Download or read it online for free here:
Download link
(1.6MB, PDF)

Similar books

Book cover: E 'Infinite' Ring Spaces and E 'Infinite' Ring SpectraE 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra
by - Springer
The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.
(13270 views)
Book cover: Introduction to Characteritic Classes and Index TheoryIntroduction to Characteritic Classes and Index Theory
by - Universidade de Lisboa
This text deals with characteristic classes of real and complex vector bundles and Hirzebruch-Riemann-Roch formula. We will present a few basic but fundamental facts which should help the reader to gain a good idea of the mathematics involved.
(11490 views)
Book cover: The Homology of Iterated Loop SpacesThe Homology of Iterated Loop Spaces
by - Springer
A thorough treatment of homology operations and of their application to the calculation of the homologies of various spaces. The book studies an up to homotopy notion of an algebra over a monad and its role in the theory of iterated loop spaces.
(11530 views)
Book cover: Manifold TheoryManifold Theory
by - UCLA
These notes are a supplement to a first year graduate course in manifold theory. These are the topics covered: Manifolds (Smooth Manifolds, Projective Space, Matrix Spaces); Basic Tensor Analysis; Basic Cohomology Theory; Characteristic Classes.
(10877 views)