**Geometric Models for Noncommutative Algebra**

by Ana Cannas da Silva, Alan Weinstein

**Publisher**: University of California at Berkeley 1998**Number of pages**: 194

**Description**:

Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, like the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces. In this book, we discuss several types of geometric objects which are closely related to noncommutative algebras.

Download or read it online for free here:

**Download link**

(3.3MB, PDF)

## Similar books

**Noncommutative Geometry**

by

**Alain Connes**-

**Academic Press**

The definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics. Ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics.

(

**8594**views)

**An Introduction to Noncommutative Spaces and their Geometry**

by

**Giovanni Landi**-

**arXiv**

These lectures notes are an introduction for physicists to several ideas and applications of noncommutative geometry. The necessary mathematical tools are presented in a way which we feel should be accessible to physicists.

(

**8033**views)

**An informal introduction to the ideas and concepts of noncommutative geometry**

by

**Thierry Masson**-

**arXiv**

This is an extended version of a three hours lecture given at the 6th Peyresq meeting 'Integrable systems and quantum field theory'. We make an overview of some of the mathematical results which motivated the development of noncommutative geometry.

(

**5803**views)

**Surveys in Noncommutative Geometry**

by

**Nigel Higson, John Roe**-

**American Mathematical Society**

These lectures are intended to introduce key topics in noncommutative geometry to mathematicians unfamiliar with the subject. Topics: applications of noncommutative geometry to problems in ordinary geometry and topology, residue index theorem, etc.

(

**5532**views)