**A Primer on Homotopy Colimits**

by Daniel Dugger

**Publisher**: University of Oregon 2008**Number of pages**: 72

**Description**:

This is an expository paper on homotopy colimits and homotopy limits. These are constructions which should arguably be in the toolkit of every modern algebraic topologist. Many proofs are avoided, or perhaps just sketched.

Download or read it online for free here:

**Download link**

(560KB, PDF)

## Similar books

**Algebraic and Geometric Topology**

by

**Andrew Ranicki, Norman Levitt, Frank Quinn**-

**Springer**

The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.

(

**10190**views)

**The Homology of Iterated Loop Spaces**

by

**F. R. Cohen, T. J. Lada, P. J. May**-

**Springer**

A thorough treatment of homology operations and of their application to the calculation of the homologies of various spaces. The book studies an up to homotopy notion of an algebra over a monad and its role in the theory of iterated loop spaces.

(

**5115**views)

**Modern Algebraic Topology**

by

**D. G. Bourgin**-

**Macmillan**

Contents: Preliminary algebraic background; Chain relationships; The absolute homology groups and basic examples; Relative omology modules; Manifolds and fixed cells; Omology exact sequences; Simplicial methods and inverse and direct limits; etc.

(

**2151**views)

**Introduction to Characteritic Classes and Index Theory**

by

**Jean-Pierre Schneiders**-

**Universidade de Lisboa**

This text deals with characteristic classes of real and complex vector bundles and Hirzebruch-Riemann-Roch formula. We will present a few basic but fundamental facts which should help the reader to gain a good idea of the mathematics involved.

(

**4956**views)