Logo

E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra

Large book cover: E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra

E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra
by

Publisher: Springer
ISBN/ASIN: 3540081364
ISBN-13: 9783540081364
Number of pages: 280

Description:
The theme of this book is infinite loop space theory and its multiplicative elaboration. This is the appropriate framework for the most structured development of algebraic K-theory, by which we understand the homotopy theory of discrete categories, and one of the main goals of this volume is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.

Home page url

Download or read it online for free here:
Download link
(8.9MB, PDF)

Similar books

Book cover: Modern Algebraic TopologyModern Algebraic Topology
by - Macmillan
Contents: Preliminary algebraic background; Chain relationships; The absolute homology groups and basic examples; Relative omology modules; Manifolds and fixed cells; Omology exact sequences; Simplicial methods and inverse and direct limits; etc.
(3418 views)
Book cover: Introduction to Topological GroupsIntroduction to Topological Groups
by - UCM
These notes provide a brief introduction to topological groups with a special emphasis on Pontryaginvan Kampen's duality theorem for locally compact abelian groups. We give a completely self-contained elementary proof of the theorem.
(6631 views)
Book cover: Prerequisites in Algebraic TopologyPrerequisites in Algebraic Topology
by - NTNU
This is not an introductory textbook in algebraic topology, these notes attempt to give an overview of the parts of algebraic topology, and in particular homotopy theory, which are needed in order to appreciate that side of motivic homotopy theory.
(6700 views)
Book cover: Lectures on Etale CohomologyLectures on Etale Cohomology
by
These are the notes for a course taught at the University of Michigan in 1989 and 1998. The emphasis is on heuristic arguments rather than formal proofs and on varieties rather than schemes. The notes also discuss the proof of the Weil conjectures.
(5704 views)