Logo

A Gentle Introduction to the Art of Mathematics

Large book cover: A Gentle Introduction to the Art of Mathematics

A Gentle Introduction to the Art of Mathematics
by

Publisher: Southern Connecticut State University
Number of pages: 428

Description:
The point of this book is to help you with the transition from doing math at an elementary level (which is concerned mostly with solving problems) to doing math at an advanced level (which is much more concerned with axiomatic systems and proving statements within those systems).

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Basic Concepts of MathematicsBasic Concepts of Mathematics
by - The Trillia Group
The book will help students complete the transition from purely manipulative to rigorous mathematics. It covers basic set theory, induction, quantifiers, functions and relations, equivalence relations, properties of the real numbers, fields, etc.
(16603 views)
Book cover: Fundamental Concepts of MathematicsFundamental Concepts of Mathematics
by - University of Massachusetts
Problem Solving, Inductive vs. Deductive Reasoning, An introduction to Proofs; Logic and Sets; Sets and Maps; Counting Principles and Finite Sets; Relations and Partitions; Induction; Number Theory; Counting and Uncountability; Complex Numbers.
(16770 views)
Book cover: An Introduction to Higher MathematicsAn Introduction to Higher Mathematics
by - Whitman College
Contents: Logic (Logical Operations, De Morgan's Laws, Logic and Sets); Proofs (Direct Proofs, Existence proofs, Mathematical Induction); Number Theory (The Euclidean Algorithm); Functions (Injections and Surjections, Cardinality and Countability).
(14294 views)
Book cover: An Introduction to Mathematical ReasoningAn Introduction to Mathematical Reasoning
by - Cambridge University Press
This book introduces basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory.
(11521 views)