Logo

An Introduction to Higher Mathematics

Small book cover: An Introduction to Higher Mathematics

An Introduction to Higher Mathematics
by

Publisher: Whitman College
Number of pages: 144

Description:
Contents: Logic (Logical Operations, De Morgan's Laws, Logic and Sets); Proofs (Direct Proofs, Existence proofs, Mathematical Induction, Indirect Proof); Number Theory (The Euclidean Algorithm, The Fundamental Theorem of Arithmetic); Functions (Injections and Surjections, Cardinality and Countability, Uncountability of the Reals).

Home page url

Download or read it online for free here:
Download link
(730KB, PDF)

Similar books

Book cover: How To Write ProofsHow To Write Proofs
by - California State University, Fresno
Proofs are the heart of mathematics. What is the secret? The short answer is: there is no secret, no mystery, no magic. All that is needed is some common sense and a basic understanding of a few trusted and easy to understand techniques.
(9986 views)
Book cover: Proofs and Concepts: the fundamentals of abstract mathematicsProofs and Concepts: the fundamentals of abstract mathematics
by - University of Lethbridge
This undergraduate textbook provides an introduction to proofs, logic, sets, functions, and other fundamental topics of abstract mathematics. It is designed to be the textbook for a bridge course that introduces undergraduates to abstract mathematics.
(13525 views)
Book cover: Fundamental Concepts of MathematicsFundamental Concepts of Mathematics
by - University of Massachusetts
Problem Solving, Inductive vs. Deductive Reasoning, An introduction to Proofs; Logic and Sets; Sets and Maps; Counting Principles and Finite Sets; Relations and Partitions; Induction; Number Theory; Counting and Uncountability; Complex Numbers.
(15648 views)
Book cover: Mathematical Reasoning: Writing and ProofMathematical Reasoning: Writing and Proof
by - Pearson Education, Inc.
'Mathematical Reasoning' is designed to be a text for the first course in the college mathematics curriculum that introduces students to the processes of constructing and writing proofs and focuses on the formal development of mathematics.
(11466 views)