Logo

An Introduction to Higher Mathematics

Small book cover: An Introduction to Higher Mathematics

An Introduction to Higher Mathematics
by

Publisher: Whitman College
Number of pages: 144

Description:
Contents: Logic (Logical Operations, De Morgan's Laws, Logic and Sets); Proofs (Direct Proofs, Existence proofs, Mathematical Induction, Indirect Proof); Number Theory (The Euclidean Algorithm, The Fundamental Theorem of Arithmetic); Functions (Injections and Surjections, Cardinality and Countability, Uncountability of the Reals).

Home page url

Download or read it online for free here:
Download link
(730KB, PDF)

Similar books

Book cover: Book of ProofBook of Proof
by - Virginia Commonwealth University
This textbook is an introduction to the standard methods of proving mathematical theorems. It is written for an audience of mathematics majors at Virginia Commonwealth University, and is intended to prepare the students for more advanced courses.
(28265 views)
Book cover: A Introduction to Proofs and the Mathematical VernacularA Introduction to Proofs and the Mathematical Vernacular
by - Virginia Tech
The book helps students make the transition from freshman-sophomore calculus to more proof-oriented upper-level mathematics courses. Another goal is to train students to read more involved proofs they may encounter in textbooks and journal articles.
(15752 views)
Book cover: A Gentle Introduction to the Art of MathematicsA Gentle Introduction to the Art of Mathematics
by - Southern Connecticut State University
The point of this book is to help you with the transition from doing math at an elementary level (concerned mostly with solving problems) to doing math at an advanced level (which is much more concerned with axiomatic systems and proving statements).
(9527 views)
Book cover: An Introduction to Mathematical ReasoningAn Introduction to Mathematical Reasoning
by - Cambridge University Press
This book introduces basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory.
(3517 views)