Logo

Introduction to Mathematical Philosophy

Small book cover: Introduction to Mathematical Philosophy

Introduction to Mathematical Philosophy
by

Publisher: University of Massachusetts Amherst
Number of pages: 181

Description:
This book is intended for those who have no previous acquaintance with the topics of which it treats, and no more knowledge of mathematics than can be acquired at a primary school. It sets forth in elementary form the logical definition of number, the analysis of the notion of order, the modern doctrine of the infinite, and the theory of descriptions and classes as symbolic fictions.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: The Algebra of LogicThe Algebra of Logic
by - Project Gutenberg
Mathematical Logic is a necessary preliminary to logical Mathematics. The present work is concerned with the 'calculus ratiocinator' aspect, and shows, in an admirably succinct form, the beauty of the calculus of logic regarded as an algebra.
(7565 views)
Book cover: Notes on the Science of LogicNotes on the Science of Logic
by - University of Pittsburgh
This course assumes you know how to use truth functions and quantifiers as tools. Our task here is to study these very tools. Contents: logic of truth functional connectives; first order logic of extensional predicates, operators, and quantifiers.
(6541 views)
Book cover: Topics in Logic and FoundationsTopics in Logic and Foundations
by - The Pennsylvania State University
This is a set of lecture notes from a 15-week graduate course at the Pennsylvania State University. The course covered some topics which are important in contemporary mathematical logic and foundations but usually omitted from introductory courses.
(715 views)
Book cover: Introduction to Mathematical Logic: A problem solving courseIntroduction to Mathematical Logic: A problem solving course
by - arXiv
This is a set of questions written for a course in Mathematical Logic. Topics covered are: propositional logic; axioms of ZFC; wellorderings and equivalents of AC; ordinal and cardinal arithmetic; first order logic, and the compactness theorem; etc.
(9111 views)