Logo

Lie Groups in Physics by G. 't Hooft, M. J. G. Veltman

Small book cover: Lie Groups in Physics

Lie Groups in Physics
by

Publisher: Utrecht University
Number of pages: 75

Description:
Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); Representations of SU(N).

Download or read it online for free here:
Download link
(450KB, PDF)

Similar books

Book cover: Special Functions and Their Symmetries: Postgraduate Course in Applied AnalysisSpecial Functions and Their Symmetries: Postgraduate Course in Applied Analysis
by - University of Leeds
This text presents fundamentals of special functions theory and its applications in partial differential equations of mathematical physics. The course covers topics in harmonic, classical and functional analysis, and combinatorics.
(11051 views)
Book cover: Harmonic Oscillators and Two-by-two Matrices in Symmetry Problems in PhysicsHarmonic Oscillators and Two-by-two Matrices in Symmetry Problems in Physics
by - MDPI AG
With a degree of exaggeration, modern physics is the physics of harmonic oscillators and two-by-two matrices. Indeed, they constitute the basic language for the symmetry problems in physics, and thus the main theme of this journal.
(2078 views)
Book cover: Three Lectures on Complexity and Black HolesThree Lectures on Complexity and Black Holes
by - arXiv.org
The first lecture describes the meaning of quantum complexity, the analogy between entropy and complexity, and the second law of complexity. Lecture two reviews the connection between the second law of complexity and the interior of black holes...
(1087 views)
Book cover: Physics, Topology, Logic and Computation: A Rosetta StonePhysics, Topology, Logic and Computation: A Rosetta Stone
by - arXiv
There is extensive network of analogies between physics, topology, logic and computation. In this paper we make these analogies precise using the concept of 'closed symmetric monoidal category'. We assume no prior knowledge of category theory.
(6692 views)