**Partial Differential Equations of Mathematical Physics**

by William W. Symes

**Publisher**: Rice University 2006**Number of pages**: 105

**Description**:

This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the fundamental equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics. These equations form the backbone of modern engineering and many of the sciences, and solving them numerically is a central topic in scientific computation.

Download or read it online for free here:

**Download link**

(490KB, PDF)

## Similar books

**Interactions, Strings and Isotopies in Higher Order Anisotropic Superspaces**

by

**Sergiu I. Vacaru**-

**arXiv**

The monograph summarizes the author's results on the geometry of anholonomic and locally anisotropic interactions. The main subjects are in the theory of field interactions, strings and diffusion processes on spaces, superspaces and isospaces.

(

**10485**views)

**Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem**

by

**Peter B. Gilkey**-

**Publish or Perish Inc.**

This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas and the Gauss-Bonnet theorem.

(

**9266**views)

**Mathematics for Theoretical Physics**

by

**Jean Claude Dutailly**-

**arXiv**

This is a comprehensive and precise coverage of the mathematical concepts and tools used in present theoretical physics: differential geometry, Lie groups, fiber bundles, Clifford algebra, differential operators, normed algebras, connections, etc.

(

**12895**views)

**Lectures on Diffusion Problems and Partial Differential Equations**

by

**S.R.S. Varadhan**-

**Tata Institute of Fundamental Research**

Starting from Brownian Motion, the lectures quickly got into the areas of Stochastic Differential Equations and Diffusion Theory. The section on Martingales is based on additional lectures given by K. Ramamurthy of the Indian Institute of Science.

(

**8398**views)