**Partial Differential Equations of Mathematical Physics**

by William W. Symes

**Publisher**: Rice University 2006**Number of pages**: 105

**Description**:

This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the fundamental equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics. These equations form the backbone of modern engineering and many of the sciences, and solving them numerically is a central topic in scientific computation.

Download or read it online for free here:

**Download link**

(490KB, PDF)

## Similar books

**Random Matrices**

by

**B. Eynard**

This is an introductory course about random matrices. These notes will give the reader a smell of that fascinating tool for physicists and mathematicians that are Random Matrices, and they can give the envy to learn and search more.

(

**5733**views)

**Introduction to Spectral Theory of SchrÃ¶dinger Operators**

by

**A. Pankov**-

**Vinnitsa State Pedagogical University**

Contents: Operators in Hilbert spaces; Spectral theorem of self-adjoint operators; Compact operators and the Hilbert-Schmidt theorem; Perturbation of discrete spectrum; Variational principles; One-dimensional Schroedinger operator; etc.

(

**4685**views)

**An Introduction to Hyperbolic Analysis**

by

**Andrei Khrennikov, Gavriel Segre**-

**arXiv**

Contents: The hyperbolic algebra as a bidimensional Clifford algebra; Limits and series in the hyperbolic plane; The hyperbolic Euler formula; Analytic functions in the hyperbolic plane; Multivalued functions on the hyperbolic plane; etc.

(

**7202**views)

**Funky Mathematical Physics Concepts**

by

**Eric L. Michelsen**-

**UCSD**

This text covers some of the unusual or challenging concepts in graduate mathematical physics. This work is meant to be used with any standard text, to help emphasize those things that are most confusing for new students.

(

**3192**views)