Logo

Partial Differential Equations of Mathematical Physics

Small book cover: Partial Differential Equations of Mathematical Physics

Partial Differential Equations of Mathematical Physics
by

Publisher: Rice University
Number of pages: 105

Description:
This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the fundamental equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics. These equations form the backbone of modern engineering and many of the sciences, and solving them numerically is a central topic in scientific computation.

Home page url

Download or read it online for free here:
Download link
(490KB, PDF)

Similar books

Book cover: Funky Mathematical Physics ConceptsFunky Mathematical Physics Concepts
by - UCSD
This text covers some of the unusual or challenging concepts in graduate mathematical physics. This work is meant to be used with any standard text, to help emphasize those things that are most confusing for new students.
(3553 views)
Book cover: Feynman Diagrams and Differential EquationsFeynman Diagrams and Differential Equations
by - arXiv
The authors review the method of differential equations for the evaluation of D-dimensionally regulated Feynman integrals. After dealing with the technique, we discuss its application in the context of corrections to the photon propagator in QED.
(8147 views)
Book cover: Mathematical Physics: Problems and SolutionsMathematical Physics: Problems and Solutions
by - Samara University Press
The present Proceedings is intended to be used by the students of physical and mechanical-mathematical departments of the universities, who are interested in acquiring a deeper knowledge of the methods of mathematical and theoretical physics.
(6297 views)
Book cover: Euclidean Random Matrices and Their Applications in PhysicsEuclidean Random Matrices and Their Applications in Physics
by - arXiv
We review the state of the art of the theory of Euclidean random matrices, focusing on the density of their eigenvalues. Both Hermitian and non-Hermitian matrices are considered and links with simpler random matrix ensembles are established.
(3713 views)