Logo

Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem

Large book cover: Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem

Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem
by

Publisher: Publish or Perish Inc.
ISBN/ASIN: 0849378745
Number of pages: 536

Description:
This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas, the Gauss-Bonnet theorem for a manifold with smooth boundary, and the geometrical theorem for a manifold with smooth boundary.

Home page url

Download or read it online for free here:
Download link
(DVI, PS)

Similar books

Book cover: SolitonsSolitons
by - University of Cambridge
These lectures cover aspects of solitons with focus on applications to the quantum dynamics of supersymmetric gauge theories and string theory. The lectures consist of four sections, each dealing with a different soliton.
(12024 views)
Book cover: Introduction to Physics for MathematiciansIntroduction to Physics for Mathematicians
by
A set of class notes taken by math graduate students, the goal of the course was to introduce some basic concepts from theoretical physics which play so fundamental role in a recent intermarriage between physics and pure mathematics.
(17733 views)
Book cover: Mirror SymmetryMirror Symmetry
by - American Mathematical Society
The book provides an introduction to the field of mirror symmetry from both a mathematical and physical perspective. After covering the relevant background material, the monograph is devoted to the proof of mirror symmetry from various viewpoints.
(14780 views)
Book cover: Introduction to Mathematical PhysicsIntroduction to Mathematical Physics
by - Wikibooks
The goal of this book is to propose an ensemble view of modern physics. The coherence between various fields of physics is insured by following two axes: a first is the universal mathematical language; the second is the study of the N body problem.
(10849 views)