**Trends in Commutative Algebra**

by Luchezar L. Avramov, at al.

**Publisher**: Cambridge University Press 2005**ISBN/ASIN**: 0521831954**ISBN-13**: 9780521831956**Number of pages**: 264

**Description**:

This book is based on lectures by six internationally known experts presented at the 2002 MSRI introductory workshop on commutative algebra. They focus on the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology and representation theory, and combinatorics, with all necessary background provided.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Commutative Algebra and Noncommutative Algebraic Geometry**

by

**David Eisenbud, et al.**-

**Cambridge University Press**

The books cover birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, tilting theory, etc. These volumes reflect the lively interaction between the subjects.

(

**6186**views)

**Frobenius Splitting in Commutative Algebra**

by

**Karen E. Smith, Wenliang Zhang**-

**arXiv**

Frobenius splitting has inspired a vast arsenal of techniques in commutative algebra, algebraic geometry, and representation theory. The purpose of these lectures is to give a gentle introduction to Frobenius splitting for beginners.

(

**7157**views)

**Commutative Algebra**

by

**Jacob Lurie, Akhil Mathew**-

**Harvard University**

Topics: Unique factorization; Basic definitions; Rings of holomorphic functions; R-modules; Ideals; Localization; SpecR and Zariski topology; The ideal class group; Dedekind domains; Hom and the tensor product; Exactness; Projective modules; etc.

(

**11281**views)

**Determinantal Rings**

by

**Winfried Bruns, Udo Vetter**-

**Springer**

Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. The book gives a coherent treatment of the structure of determinantal rings. The approach is via the theory of algebras with straightening law.

(

**11369**views)