**Trends in Commutative Algebra**

by Luchezar L. Avramov, at al.

**Publisher**: Cambridge University Press 2005**ISBN/ASIN**: 0521831954**ISBN-13**: 9780521831956**Number of pages**: 264

**Description**:

This book is based on lectures by six internationally known experts presented at the 2002 MSRI introductory workshop on commutative algebra. They focus on the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology and representation theory, and combinatorics, with all necessary background provided.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**A Quick Review of Commutative Algebra**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology, Bombay**

These notes give a rapid review of the rudiments of classical commutative algebra. Some of the main results whose proofs are outlined here are: Hilbert basis theorem, primary decomposition of ideals in noetherian rings, Krull intersection theorem.

(

**7395**views)

**The CRing Project: a collaborative open source textbook on commutative algebra**

by

**Shishir Agrawal, et al.**-

**CRing Project**

The CRing project is an open source textbook on commutative algebra, aiming to comprehensively cover the foundations needed for algebraic geometry at the EGA or SGA level. Suitable for a beginning undergraduate with a background in abstract algebra.

(

**6566**views)

**Progress in Commutative Algebra 2: Closures, Finiteness and Factorization**

by

**Christopher Francisco, et al.**-

**De Gruyter Open**

This volume contains surveys on closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a guide to closure operations...

(

**1246**views)

**Commutative Algebra**

by

**Pete L. Clark**-

**University of Georgia**

Contents: Introduction to Commutative Rings; Introduction to Modules; Ideals; Examples of Rings; Swan's Theorem; Localization; Noetherian Rings; Boolean rings; Affine algebras and the Nullstellensatz; The spectrum; Integral extensions; etc.

(

**7166**views)