Logo

Commutative Algebra by Keerthi Madapusi

Small book cover: Commutative Algebra

Commutative Algebra
by

Publisher: Harvard University
Number of pages: 177

Description:
Contents: Graded Rings and Modules; Flatness; Integrality: the Cohen-Seidenberg Theorems; Completions and Hensel's Lemma; Dimension Theory; Invertible Modules and Divisors; Noether Normalization and its Consequences; Quasi-finite Algebras and the Main Theorem of Zariski; Regular Sequences and Depth; The Cohen Macaulay Condition; Homological Theory of Regular Rings; Formal Smoothness and the Cohen Structure Theorems; etc.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Commutative AlgebraCommutative Algebra
by - University of Georgia
Contents: Introduction to Commutative Rings; Introduction to Modules; Ideals; Examples of Rings; Swan's Theorem; Localization; Noetherian Rings; Boolean rings; Affine algebras and the Nullstellensatz; The spectrum; Integral extensions; etc.
(5543 views)
Book cover: Commutative Algebra and Noncommutative Algebraic GeometryCommutative Algebra and Noncommutative Algebraic Geometry
by - Cambridge University Press
The books cover birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, tilting theory, etc. These volumes reflect the lively interaction between the subjects.
(1013 views)
Book cover: A Course In Commutative AlgebraA Course In Commutative Algebra
by - University of Illinois
This is a text for a basic course in commutative algebra, it should be accessible to those who have studied algebra at the beginning graduate level. The book should help the student reach an advanced level as quickly and efficiently as possible.
(12730 views)
Book cover: Commutative AlgebraCommutative Algebra
by - Harvard University
Topics: Unique factorization; Basic definitions; Rings of holomorphic functions; R-modules; Ideals; Localization; SpecR and Zariski topology; The ideal class group; Dedekind domains; Hom and the tensor product; Exactness; Projective modules; etc.
(5783 views)