**The Geometrization of Physics**

by Richard S. Palais

**Publisher**: University of California at Irvine 1981**Number of pages**: 107

**Description**:

The major goal of these notes is to develop, in sufficient detail to be convincing, an observation that basically goes back to Kaluza and Klein in the early 1920's that not only can gauge fields of the "Yang-Mills" type be unified with the remarkable successful Einstein model of gravitation in a beautiful, simple, and natural manner, but also that when this unification is made they, like gravitational field, disappear as forces and are described by pure geometry, in the sense that particles simply move along geodesics of an appropriate Riemannian geometry.

Download or read it online for free here:

**Download link**

(630KB, PDF)

## Similar books

**Noncommutative Geometry**

by

**Alain Connes**-

**Academic Press**

The definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics. Ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics.

(

**9094**views)

**Differential Geometry in Physics**

by

**Gabriel Lugo**-

**University of North Carolina at Wilmington**

These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.

(

**13585**views)

**Noncommutative Geometry, Quantum Fields and Motives**

by

**Alain Connes, Matilde Marcolli**-

**American Mathematical Society**

The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role.

(

**8003**views)

**Geometry and Group Theory**

by

**Christopher Pope**-

**Texas A&M University**

Lecture notes on Geometry and Group Theory. In this course, we develop the basic notions of Manifolds and Geometry, with applications in physics, and also we develop the basic notions of the theory of Lie Groups, and their applications in physics.

(

**13723**views)