Logo

Noncommutative Geometry, Quantum Fields and Motives

Large book cover: Noncommutative Geometry, Quantum Fields and Motives

Noncommutative Geometry, Quantum Fields and Motives
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821842102
ISBN-13: 9780821842102
Number of pages: 705

Description:
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools.

Home page url

Download or read it online for free here:
Download link
(6.4MB, PDF)

Similar books

Book cover: An Introduction to Noncommutative Spaces and their GeometryAn Introduction to Noncommutative Spaces and their Geometry
by - arXiv
These lectures notes are an introduction for physicists to several ideas and applications of noncommutative geometry. The necessary mathematical tools are presented in a way which we feel should be accessible to physicists.
(8258 views)
Book cover: Geometry in PhysicsGeometry in Physics
by
Contents: Exterior Calculus (Exterior Algebra, Differential forms in Rn, Metric, Gauge theory); Manifolds (Basic structures, Tangent space); Lie groups (Lie group actions, Lie algebras, Lie algebra actions, From Lie algebras to Lie groups).
(7719 views)
Book cover: Introduction to Braided Geometry and q-Minkowski SpaceIntroduction to Braided Geometry and q-Minkowski Space
by - arXiv
Systematic introduction to the geometry of linear braided spaces. These are versions of Rn in which the coordinates xi have braid-statistics described by an R-matrix. From this starting point we survey the author's braided-approach to q-deformation.
(5044 views)
Book cover: Differential Geometry in PhysicsDifferential Geometry in Physics
by - University of North Carolina at Wilmington
These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.
(13309 views)