**Noncommutative Geometry, Quantum Fields and Motives**

by Alain Connes, Matilde Marcolli

**Publisher**: American Mathematical Society 2007**ISBN/ASIN**: 0821842102**ISBN-13**: 9780821842102**Number of pages**: 705

**Description**:

The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools.

Download or read it online for free here:

**Download link**

(6.4MB, PDF)

## Similar books

**Geometry, Topology and Physics**

by

**Maximilian Kreuzer**-

**Technische Universitat Wien**

From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.

(

**13695**views)

**Lectures on the Geometry of Quantization**

by

**Sean Bates, Alan Weinstein**-

**University of California at Berkeley**

An introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role which these ideas play in formalizing the transition between the mathematics of classical dynamics and that of quantum mechanics.

(

**9475**views)

**Edinburgh Lectures on Geometry, Analysis and Physics**

by

**Michael Atiyah**-

**arXiv**

These notes are based on a set of six lectures that the author gave in Edinburgh and they cover some topics in the interface between Geometry and Physics. They involve some unsolved problems and they may stimulate readers to investigate them.

(

**6706**views)

**First Steps Towards a Symplectic Dynamics**

by

**Barney Bramham, Helmut Hofer**-

**arXiv**

Both dynamical systems and symplectic geometry have rich theories and the time seems ripe to develop the common core with integrated ideas from both fields. We discuss problems which show how dynamical systems and symplectic ideas come together.

(

**8011**views)