**Introduction to Randomness and Statistics**

by Alexander K. Hartmann

**Publisher**: arXiv 2009**Number of pages**: 95

**Description**:

This text provides a practical introduction to randomness and data analysis, in particular in the context of computer simulations. At the beginning, the most basics concepts of probability are given, in particular discrete and continuous random variables. The text is basically self-contained, comes with several example C programs and contains eight practical exercises.

Download or read it online for free here:

**Download link**

(2.4MB, PDF)

## Similar books

**Think Stats: Probability and Statistics for Programmers**

by

**Allen B. Downey**-

**Green Tea Press**

Think Stats is an introduction to Probability and Statistics for Python programmers. This new book emphasizes simple techniques you can use to explore real data sets and answer interesting statistical questions. Basic skills in Python are assumed.

(

**16939**views)

**Introduction to Probability, Statistics, and Random Processes**

by

**Hossein Pishro-Nik**-

**Kappa Research, LLC**

This book introduces students to probability, statistics, and stochastic processes. It can be used by both students and practitioners in engineering, sciences, finance, and other fields. It provides a clear and intuitive approach to these topics.

(

**9068**views)

**Bayesian Field Theory**

by

**J. C. Lemm**-

**arXiv.org**

A particular Bayesian field theory is defined by combining a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.

(

**2862**views)

**Reversible Markov Chains and Random Walks on Graphs**

by

**David Aldous, James Allen Fill**-

**University of California, Berkeley**

From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; etc.

(

**10663**views)