**Algebraic Geometry over the Complex Numbers**

by Donu Arapura

**Publisher**: Purdue University 2009**Number of pages**: 234

**Description**:

Algebraic geometry is the geometric study of sets of solutions to polynomial equations over a field (or ring). In this book the author have tried to maintain a reasonable balance between rigor, intuition and completeness; so it retains some of the informal quality of lecture notes.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Quasi-Projective Moduli for Polarized Manifolds**

by

**Eckart Viehweg**-

**Springer**

This book discusses two subjects of quite different nature: Construction methods for quotients of quasi-projective schemes by group actions or by equivalence relations and properties of direct images of certain sheaves under smooth morphisms.

(

**7313**views)

**Multiplication of Vectors and Structure of 3D Euclidean Space**

by

**Miroslav Josipovic**-

**viXra**

This text is a motivational survey of geometric algebra in 3D. The intention here was to use simple examples and reader is referred to the independent problem solving. The active reading of text is recommended, with paper and pencil in hand.

(

**2082**views)

**Abelian Varieties**

by

**J. S. Milne**

Introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.

(

**8765**views)

**Introduction to Stokes Structures**

by

**Claude Sabbah**-

**arXiv**

The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one.

(

**5911**views)