Algebraic Geometry over the Complex Numbers

Small book cover: Algebraic Geometry over the Complex Numbers

Algebraic Geometry over the Complex Numbers

Publisher: Purdue University
Number of pages: 234

Algebraic geometry is the geometric study of sets of solutions to polynomial equations over a field (or ring). In this book the author have tried to maintain a reasonable balance between rigor, intuition and completeness; so it retains some of the informal quality of lecture notes.

Home page url

Download or read it online for free here:
Download link
(1.6MB, PDF)

Similar books

Book cover: Lectures on Logarithmic Algebraic GeometryLectures on Logarithmic Algebraic Geometry
by - University of California, Berkeley
Logarithmic geometry deals with two problems in algebraic geometry: compactification and degeneration. Contents: The geometry of monoids; Log structures and charts; Morphisms of log schemes; Differentials and smoothness; De Rham and Betti cohomology.
Book cover: Current Topics in Complex Algebraic GeometryCurrent Topics in Complex Algebraic Geometry
by - Cambridge University Press
The 1992/93 year at the Mathematical Sciences Research Institute was devoted to Complex Algebraic Geometry. This volume collects articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change.
Book cover: Current Developments in Algebraic GeometryCurrent Developments in Algebraic Geometry
by - Cambridge University Press
An introductory panorama of current progress in the field, addressed to both beginners and experts. This volume offers expository overviews of the state of the art in many areas of algebraic geometry. Prerequisites are kept to a minimum ...
Book cover: Lectures on Torus Embeddings and ApplicationsLectures on Torus Embeddings and Applications
by - Tata Institute of Fundamental Research
Theory of torus embeddings has find many applications. The point of the theory lies in its ability of translating meaningful algebra-geometric phenomena into very simple statements about the combinatorics of cones in affine space over the reals.