Logo

Smarandache Semigroups by W. B. Vasantha Kandasamy

Large book cover: Smarandache Semigroups

Smarandache Semigroups
by

Publisher: American Research Press
ISBN/ASIN: 1931233594
ISBN-13: 9781931233590
Number of pages: 95

Description:
This book is a piece of work on Smarandache semigroups and assumes the reader to have a good background on group theory; we give some recollection about groups and some of its properties just for quick reference. Since most of the properties and theorems given regarding the Smarandache semigroups are new and cannot be found in existing literature the author has taken utmost efforts to see that the concepts are completely understood by illustrating with examples and a great number of problems.

Download or read it online for free here:
Download link
(500KB, PDF)

Similar books

Book cover: Theory of Groups of Finite OrderTheory of Groups of Finite Order
by - Cambridge University Press
After introducing permutation notation and defining group, the author discusses the simpler properties of group that are independent of their modes of representation; composition-series of groups; isomorphism of a group with itself; etc.
(5157 views)
Book cover: Theory and Applications of Finite GroupsTheory and Applications of Finite Groups
by - J. Wiley
The book presents in a unified manner the more fundamental aspects of finite groups and their applications, and at the same time preserves the advantage which arises when each branch of an extensive subject is written by a specialist in that branch.
(3191 views)
Book cover: Lectures on Algebraic GroupsLectures on Algebraic Groups
by - University of Oregon
Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.
(6707 views)
Book cover: Algebraic Groups, Lie Groups, and their Arithmetic SubgroupsAlgebraic Groups, Lie Groups, and their Arithmetic Subgroups
by
This work is a modern exposition of the theory of algebraic group schemes, Lie groups, and their arithmetic subgroups. Algebraic groups are groups defined by polynomials. Those in this book can all be realized as groups of matrices.
(7139 views)