Logo

Smarandache Semigroups by W. B. Vasantha Kandasamy

Large book cover: Smarandache Semigroups

Smarandache Semigroups
by

Publisher: American Research Press
ISBN/ASIN: 1931233594
ISBN-13: 9781931233590
Number of pages: 95

Description:
This book is a piece of work on Smarandache semigroups and assumes the reader to have a good background on group theory; we give some recollection about groups and some of its properties just for quick reference. Since most of the properties and theorems given regarding the Smarandache semigroups are new and cannot be found in existing literature the author has taken utmost efforts to see that the concepts are completely understood by illustrating with examples and a great number of problems.

Download or read it online for free here:
Download link
(500KB, PDF)

Similar books

Book cover: Groups and Semigroups: Connections and ContrastsGroups and Semigroups: Connections and Contrasts
by - University of Nebraska-Lincoln
In the present paper, I will discuss some of these connections between group theory and semigroup theory, and I will also discuss some rather surprising contrasts between the theories. I will focus primarily on the theory of inverse semigroups.
(9909 views)
Book cover: Group TheoryGroup Theory
by
Contents: Basic Definitions and Results; Free Groups and Presentations; Coxeter Groups; Automorphisms and Extensions; Groups Acting on Sets; The Sylow Theorems; Subnormal Series; Solvable and Nilpotent Groups; Representations of Finite Groups.
(14467 views)
Book cover: Algebraic Groups, Lie Groups, and their Arithmetic SubgroupsAlgebraic Groups, Lie Groups, and their Arithmetic Subgroups
by
This work is a modern exposition of the theory of algebraic group schemes, Lie groups, and their arithmetic subgroups. Algebraic groups are groups defined by polynomials. Those in this book can all be realized as groups of matrices.
(12970 views)
Book cover: Theory of Groups of Finite OrderTheory of Groups of Finite Order
by - Cambridge University Press
After introducing permutation notation and defining group, the author discusses the simpler properties of group that are independent of their modes of representation; composition-series of groups; isomorphism of a group with itself; etc.
(11073 views)