Logo

Topics in Differential Geometry

Large book cover: Topics in Differential Geometry

Topics in Differential Geometry
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821820036
ISBN-13: 9780821820032
Number of pages: 429

Description:
This book treats the fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry. The layout of the material stresses naturality and functoriality from the beginning and is as coordinate-free as possible.

Home page url

Download or read it online for free here:
Download link
(3.1MB, PDF)

Similar books

Book cover: Tensor AnalysisTensor Analysis
by - Princeton Univ Pr
The lecture notes for the first part of a one-term course on differential geometry given at Princeton in the spring of 1967. They are an expository account of the formal algebraic aspects of tensor analysis using both modern and classical notations.
(13662 views)
Book cover: Differential Geometry in PhysicsDifferential Geometry in Physics
by - University of North Carolina at Wilmington
These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.
(13134 views)
Book cover: Differential Geometry Of Three DimensionsDifferential Geometry Of Three Dimensions
by - Cambridge University Press
The book is devoted to differential invariants for a surface and their applications. By the use of vector methods the presentation is both simplified and condensed, and students are encouraged to reason geometrically rather than analytically.
(3789 views)
Book cover: Differential GeometryDifferential Geometry
by - Eötvös Loránd University
Contents: Basic Structures on Rn, Length of Curves; Curvatures of a Curve; Plane Curves; 3D Curves; Hypersurfaces; Surfaces in 3-dimensional space; Fundamental equations of hypersurface theory; Topological and Differentiable Manifolds; etc.
(8161 views)