Notes on Differential Geometry
by Noel J. Hicks
Publisher: Van Nostrand 1965
ISBN/ASIN: B0000CMMMM
Number of pages: 183
Description:
A great concise introduction to differential geometry. The ten chapters of Hicks' book contain most of the mathematics that has become the standard background for not only differential geometry, but also much of modern theoretical physics and cosmology. It thus makes a great reference book for anyone working in any of these fields.
Download or read it online for free here:
Download link
(6.2MB, PDF)
Similar books

by Gabriel Lugo - University of North Carolina at Wilmington
These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.
(19989 views)

by Richard Koch - University of Oregon
These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.
(13013 views)

by David W. Henderson - Project Euclid
This is the only book that introduces differential geometry through a combination of an intuitive geometric foundation, a rigorous connection with the standard formalisms, computer exercises with Maple, and a problems-based approach.
(7064 views)

by Stefan Waner
Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.
(23728 views)