Logo

Course of Differential Geometry

Small book cover: Course of Differential Geometry

Course of Differential Geometry
by

Publisher: Samizdat Press
ISBN/ASIN: 5747701290
Number of pages: 132

Description:
This book is a textbook for the basic course of differential geometry. It is recommended as an introductory material for this subject. The book is devoted to the firs acquaintance with the differential geometry. Therefore it begins with the theory of curves in three-dimensional Euclidean space E. Then the vectorial analysis in E is stated both in Cartesian and curvilinear coordinates, afterward the theory of surfaces in the space E is considered.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Differential Geometry Course NotesDifferential Geometry Course Notes
by - University of Oregon
These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.
(8271 views)
Book cover: Differential GeometryDifferential Geometry
by - Eötvös Loránd University
Contents: Basic Structures on Rn, Length of Curves; Curvatures of a Curve; Plane Curves; 3D Curves; Hypersurfaces; Surfaces in 3-dimensional space; Fundamental equations of hypersurface theory; Topological and Differentiable Manifolds; etc.
(9127 views)
Book cover: Notes on Differential GeometryNotes on Differential Geometry
by - Van Nostrand
A concise introduction to differential geometry. The ten chapters of Hicks' book contain most of the mathematics that has become the standard background for not only differential geometry, but also much of modern theoretical physics and cosmology.
(10293 views)
Book cover: Differential Geometry: Lecture NotesDifferential Geometry: Lecture Notes
by - Trinity College Dublin
From the table of contents: Chapter 1. Introduction to Smooth Manifolds; Chapter 2. Basic results from Differential Topology; Chapter 3. Tangent spaces and tensor calculus; Tensors and differential forms; Chapter 4. Riemannian geometry.
(8182 views)