**Course of Differential Geometry**

by Ruslan Sharipov

**Publisher**: Samizdat Press 2004**ISBN/ASIN**: 5747701290**Number of pages**: 132

**Description**:

This book is a textbook for the basic course of differential geometry. It is recommended as an introductory material for this subject. The book is devoted to the firs acquaintance with the differential geometry. Therefore it begins with the theory of curves in three-dimensional Euclidean space E. Then the vectorial analysis in E is stated both in Cartesian and curvilinear coordinates, afterward the theory of surfaces in the space E is considered.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**Notes on Differential Geometry**

by

**Matt Visser**-

**Victoria University of Wellington**

In this text the author presents an overview of differential geometry. Topics covered: Topological Manifolds and differentiable structure; Tangent and cotangent spaces; Fibre bundles; Geodesics and connexions; Riemann curvature; etc.

(

**6799**views)

**Differential Geometry Course Notes**

by

**Richard Koch**-

**University of Oregon**

These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.

(

**7784**views)

**Differential Geometry: Lecture Notes**

by

**Dmitri Zaitsev**-

**Trinity College Dublin**

From the table of contents: Chapter 1. Introduction to Smooth Manifolds; Chapter 2. Basic results from Differential Topology; Chapter 3. Tangent spaces and tensor calculus; Tensors and differential forms; Chapter 4. Riemannian geometry.

(

**7757**views)

**Topics in Differential Geometry**

by

**Peter W. Michor**-

**American Mathematical Society**

Fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry.

(

**7861**views)