Logo

An Introduction to Hyperbolic Analysis

Small book cover: An Introduction to Hyperbolic Analysis

An Introduction to Hyperbolic Analysis
by

Publisher: arXiv
Number of pages: 42

Description:
Contents: The hyperbolic algebra as a bidimensional Clifford algebra; Limits and series in the hyperbolic plane; The hyperbolic Euler formula; Analytic functions in the hyperbolic plane; Multivalued functions on the hyperbolic plane and hyperbolic Riemann surfaces; Physical application to the vibrating string; Hyperbolic Analysis as the (1,0)-case of Clifford Analysis.

Home page url

Download or read it online for free here:
Download link
(350KB, PDF)

Similar books

Book cover: Classical and Quantum Mechanics via Lie algebrasClassical and Quantum Mechanics via Lie algebras
by - arXiv
This book presents classical, quantum, and statistical mechanics in an algebraic setting, thereby introducing mathematicians, physicists, and engineers to the ideas relating classical and quantum mechanics with Lie algebras and Lie groups.
(8147 views)
Book cover: Navier-Stokes Equations: On the Existence and the Search Method for Global SolutionsNavier-Stokes Equations: On the Existence and the Search Method for Global Solutions
by - MiC
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.
(5177 views)
Book cover: Lie Groups in PhysicsLie Groups in Physics
by - Utrecht University
Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); etc.
(9162 views)
Book cover: The OctonionsThe Octonions
by - University of California
The octonions are the largest of the four normed division algebras. The author describes them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups.
(13310 views)