**Class Field Theory**

by J. S. Milne

2008**Number of pages**: 287

**Description**:

Class field theory describes the abelian extensions of a local or global field in terms of the arithmetic of the field itself. These notes contain an exposition of abelian class field theory using the algebraic/cohomological approach of Chevalley and Artin and Tate.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**The Elements of the Theory of Algebraic Numbers**

by

**Legh Wilber Reid**-

**The Macmillan company**

It has been my endeavor in this book to lead by easy stages a reader, entirely unacquainted with the subject, to an appreciation of some of the fundamental conceptions in the general theory of algebraic numbers. Many numerical examples are given.

(

**5121**views)

**Algebraic Equations**

by

**George Ballard Mathews**-

**Cambridge University Press**

This book is intended to give an account of the theory of equations according to the ideas of Galois. This method analyzes, so far as exact algebraical processes permit, the set of roots possessed by any given numerical equation.

(

**5552**views)

**Fields and Galois Theory**

by

**J. S. Milne**

A concise treatment of Galois theory and the theory of fields, including transcendence degrees and infinite Galois extensions. Contents: Basic definitions and results; Splitting fields; The fundamental theorem of Galois theory; etc.

(

**7117**views)

**Lectures On Galois Cohomology of Classical Groups**

by

**M. Kneser**-

**Tata Institute of Fundamental Research**

The main result is the Hasse principle for the one-dimensional Galois cohomology of simply connected classical groups over number fields. For most groups, this result is closely related to other types of Hasse principle.

(

**5205**views)