Complex Manifolds and Hermitian Differential Geometry
by Andrew D. Hwang
Publisher: University of Toronto 1997
Number of pages: 113
Description:
The intent of this text is not to give a thorough treatment of the algebraic and differential geometry of complex manifolds, but to introduce the reader to material of current interest as quickly as possible. The author provides a number of interesting and non-trivial examples, both in the text and in the exercises.
Download or read it online for free here:
Download link
(850KB, PDF)
Similar books

by Julius Ross - Stanford University
From the table of contents: Complex Manifolds; Almost Complex Structures; Differential Forms; Poincare Lemma; Sheaves and Cohomology; Several Complex Variables; Holomorphic Vector Bundles; Kaehler Manifolds; Hodge Theory; Lefschetz Theorems; etc.
(6597 views)

by Jean-Pierre Demailly - Universite de Grenoble
Basic concepts of complex geometry, coherent sheaves and complex analytic spaces, positive currents and potential theory, sheaf cohomology and spectral sequences, Hermitian vector bundles, Hodge theory, positive vector bundles, etc.
(19815 views)

by Gerald Kaiser - University of Massachusetts at Lowell
A new synthesis of the principles of quantum mechanics and Relativity is proposed in the context of complex differential geometry. The positivity of the energy implies that wave functions and fields can be extended to complex spacetime.
(15768 views)

by John Milnor - Princeton University Press
This text studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the case of rational maps of the Riemann sphere. The book introduces some key ideas in the field, and forms a basis for further study.
(17220 views)