**Quantum Physics, Relativity, and Complex Spacetime**

by Gerald Kaiser

**Publisher**: University of Massachusetts at Lowell 2003**ISBN/ASIN**: 0444884653**Number of pages**: 252

**Description**:

A new synthesis of the principles of quantum mechanics and Relativity is proposed in the context of complex differential geometry. The positivity of the energy implies that wave functions and fields can be extended to complex spacetime, and it is shown that this complexification has a solid physical interpretation as an extended phase space. The extended fields can be said to be realistic wavelet transforms of the original fields. A new, algebraic theory of wavelets is developed.

Download or read it online for free here:

**Download link**

(950KB, PDF)

## Similar books

**Kähler-Einstein metrics: Old and New**

by

**Daniele Angella, Cristiano Spotti**-

**arXiv.org**

We present classical and recent results on Kaehler-Einstein metrics on compact complex manifolds, focusing on existence, obstructions and relations to algebraic geometric notions of stability (K-stability). These are the notes for author's course.

(

**1398**views)

**Lectures on Complex Analytic Manifolds**

by

**L. Schwartz**-

**Tata Institute of Fundamental Research**

Topics covered: Differentiable Manifolds; C maps, diffeomorphisms. Effect of a map; The Tensor Bundles; Existence and uniqueness of the exterior differentiation; Manifolds with boundary; Integration on chains; Some examples of currents; etc.

(

**6898**views)

**Differential Geometry of Indefinite Complex Submanifolds in Indefinite Complex Space Forms**

by

**Alfonso Romero, Young Jin Suh**

From the table of contents: Chapter 1. Linear preliminaries; Chapter 2. Indefinite Kaehler manifolds; Chapter 3. Complex hypersurfaces; Chapter 4. Complex submanifolds; Chapter 5. Totally real bisectional curvature; and more.

(

**4277**views)

**Complex Manifolds**

by

**Julius Ross**-

**Stanford University**

From the table of contents: Complex Manifolds; Almost Complex Structures; Differential Forms; Poincare Lemma; Sheaves and Cohomology; Several Complex Variables; Holomorphic Vector Bundles; Kaehler Manifolds; Hodge Theory; Lefschetz Theorems; etc.

(

**1648**views)