**Complex Geometry of Nature and General Relativity**

by Giampiero Esposito

**Publisher**: arXiv 1999**Number of pages**: 229

**Description**:

An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Complex Manifolds and Hermitian Differential Geometry**

by

**Andrew D. Hwang**-

**University of Toronto**

The intent is not to give a thorough treatment of the algebraic and differential geometry of complex manifolds, but to introduce the reader to material of current interest as quickly as possible. A number of interesting examples is provided.

(

**7922**views)

**Differential Geometry of Indefinite Complex Submanifolds in Indefinite Complex Space Forms**

by

**Alfonso Romero, Young Jin Suh**

From the table of contents: Chapter 1. Linear preliminaries; Chapter 2. Indefinite Kaehler manifolds; Chapter 3. Complex hypersurfaces; Chapter 4. Complex submanifolds; Chapter 5. Totally real bisectional curvature; and more.

(

**4691**views)

**Quantum Physics, Relativity, and Complex Spacetime**

by

**Gerald Kaiser**-

**University of Massachusetts at Lowell**

A new synthesis of the principles of quantum mechanics and Relativity is proposed in the context of complex differential geometry. The positivity of the energy implies that wave functions and fields can be extended to complex spacetime.

(

**10565**views)

**Complex Analytic and Differential Geometry**

by

**Jean-Pierre Demailly**-

**Universite de Grenoble**

Basic concepts of complex geometry, coherent sheaves and complex analytic spaces, positive currents and potential theory, sheaf cohomology and spectral sequences, Hermitian vector bundles, Hodge theory, positive vector bundles, etc.

(

**13102**views)