**Complex Geometry of Nature and General Relativity**

by Giampiero Esposito

**Publisher**: arXiv 1999**Number of pages**: 229

**Description**:

An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Dynamics in One Complex Variable**

by

**John Milnor**-

**Princeton University Press**

This text studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the case of rational maps of the Riemann sphere. The book introduces some key ideas in the field, and forms a basis for further study.

(

**8909**views)

**Complex Manifolds**

by

**Julius Ross**-

**Stanford University**

From the table of contents: Complex Manifolds; Almost Complex Structures; Differential Forms; Poincare Lemma; Sheaves and Cohomology; Several Complex Variables; Holomorphic Vector Bundles; Kaehler Manifolds; Hodge Theory; Lefschetz Theorems; etc.

(

**573**views)

**Lectures On Levi Convexity Of Complex Manifolds And Cohomology Vanishing Theorems**

by

**E. Vesentini**-

**Tata Institute Of Fundamental Research**

These are notes of lectures which the author gave in the winter 1965. Topics covered: Vanishing theorems for hermitian manifolds; W-ellipticity on Riemannian manifolds; Local expressions for and the main inequality; Vanishing Theorems.

(

**4182**views)

**Complex Analytic and Differential Geometry**

by

**Jean-Pierre Demailly**-

**Universite de Grenoble**

Basic concepts of complex geometry, coherent sheaves and complex analytic spaces, positive currents and potential theory, sheaf cohomology and spectral sequences, Hermitian vector bundles, Hodge theory, positive vector bundles, etc.

(

**11038**views)