Logo

Why are Braids Orderable? by Patrick Dehornoy, at al.

Small book cover: Why are Braids Orderable?

Why are Braids Orderable?
by


Number of pages: 206

Description:
In the decade since the discovery that Artin's braid groups enjoy a left-invariant linear ordering, several quite different approaches have been applied to understand this phenomenon. This book is an account of those approaches, involving self-distributive algebra, uniform finite trees, combinatorial group theory, mapping class groups, laminations, and hyperbolic geometry.

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: Group Theory: Birdtracks, Lie's, and Exceptional GroupsGroup Theory: Birdtracks, Lie's, and Exceptional Groups
by - Princeton University Press
A book on the theory of Lie groups for researchers and graduate students in theoretical physics and mathematics. It answers what Lie groups preserve trilinear, quadrilinear, and higher order invariants. Written in a lively and personable style.
(10036 views)
Book cover: Groups and Semigroups: Connections and ContrastsGroups and Semigroups: Connections and Contrasts
by - University of Nebraska-Lincoln
In the present paper, I will discuss some of these connections between group theory and semigroup theory, and I will also discuss some rather surprising contrasts between the theories. I will focus primarily on the theory of inverse semigroups.
(4784 views)
Book cover: Group Characters, Symmetric Functions, and the Hecke AlgebraGroup Characters, Symmetric Functions, and the Hecke Algebra
by - American Mathematical Society
The book covers a set of interrelated topics, presenting a self-contained exposition of the algebra behind the Jones polynomial along with various excursions into related areas. Directed at graduate students and mathematicians.
(7160 views)
Book cover: Symmetry Groups and Their ApplicationsSymmetry Groups and Their Applications
by - Academic Press
A beginning graduate level book on applied group theory. Only those aspects of group theory are treated which are useful in the physical sciences, but the mathematical apparatus underlying the applications is presented with a high degree of rigor.
(9363 views)