Logo

Why are Braids Orderable? by Patrick Dehornoy, at al.

Small book cover: Why are Braids Orderable?

Why are Braids Orderable?
by


Number of pages: 206

Description:
In the decade since the discovery that Artin's braid groups enjoy a left-invariant linear ordering, several quite different approaches have been applied to understand this phenomenon. This book is an account of those approaches, involving self-distributive algebra, uniform finite trees, combinatorial group theory, mapping class groups, laminations, and hyperbolic geometry.

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: Lectures on Algebraic GroupsLectures on Algebraic Groups
by - University of Oregon
Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.
(11599 views)
Book cover: Lectures on Semi-group Theory and its Application to Cauchy's Problem in Partial Differential EquationsLectures on Semi-group Theory and its Application to Cauchy's Problem in Partial Differential Equations
by - Tata Institute of Fundamental Research
In these lectures, we shall be concerned with the differentiability and the representation of one-parameter semi-groups of bounded linear operators on a Banach space and their applications to the initial value problem for differential equations.
(10786 views)
Book cover: An Introduction to the Theory of Groups of Finite OrderAn Introduction to the Theory of Groups of Finite Order
by - Oxford Clarendon Press
This book aims at introducing the reader to more advanced treatises and original papers on Groups of finite order. The subject requires for its study only an elementary knowledge of Algebra. I have tried to lighten for him the initial difficulties.
(5075 views)
Book cover: Lie groups and Lie algebrasLie groups and Lie algebras
by - UC Berkeley
From the table of contents: Tangent Lie algebras to Lie groups; Simply Connected Lie Groups; Hopf Algebras; PBW Theorem and Deformations; Lie algebra cohomology; Engel's Theorem and Lie's Theorem; Cartan Criterion, Whitehead and Weyl Theorems; etc.
(10834 views)