**Complex Multiplication**

by J. S. Milne

2006**Number of pages**: 113

**Description**:

These are preliminary notes for a modern account of the theory of complex multiplication. The reader is expected to have a good knowledge of basic algebraic number theory, and basic algebraic geometry, including abelian varieties.

Download or read it online for free here:

**Download link**

(930KB, PDF)

## Similar books

**Algebraic Number Theory**

by

**J.S. Milne**

Contents: Preliminaries From Commutative Algebra; Rings of Integers; Dedekind Domains; Factorization; The Finiteness of the Class Number; The Unit Theorem; Cyclotomic Extensions; Fermat's Last Theorem; Valuations; Local Fields; Global Fields.

(

**15518**views)

**Notes on the Theory of Algebraic Numbers**

by

**Steve Wright**-

**arXiv**

This is a series of lecture notes on the elementary theory of algebraic numbers, using only knowledge of a first-semester graduate course in algebra (primarily groups and rings). No prerequisite knowledge of fields is required.

(

**6555**views)

**Heegner Points and Rankin L-Series**

by

**Henri Darmon, Shou-Wu Zhang**-

**Cambridge University Press**

This volume has the Gross-Zagier formula and its avatars as a common unifying theme. It covers the theory of complex multiplication, automorphic forms, the Rankin-Selberg method, arithmetic intersection theory, Iwasawa theory, and other topics.

(

**8736**views)

**A Course In Algebraic Number Theory**

by

**Robert B. Ash**-

**University of Illinois**

Basic course in algebraic number theory. It covers the general theory of factorization of ideals in Dedekind domains, the use of Kummerâ€™s theorem, the factorization of prime ideals in Galois extensions, local and global fields, etc.

(

**15347**views)