Complex Multiplication
by J. S. Milne
2006
Number of pages: 113
Description:
These are preliminary notes for a modern account of the theory of complex multiplication. The reader is expected to have a good knowledge of basic algebraic number theory, and basic algebraic geometry, including abelian varieties.
Download or read it online for free here:
Download link
(930KB, PDF)
Similar books

by J.S. Milne
Contents: Preliminaries From Commutative Algebra; Rings of Integers; Dedekind Domains; Factorization; The Finiteness of the Class Number; The Unit Theorem; Cyclotomic Extensions; Fermat's Last Theorem; Valuations; Local Fields; Global Fields.
(15518 views)

by Steve Wright - arXiv
This is a series of lecture notes on the elementary theory of algebraic numbers, using only knowledge of a first-semester graduate course in algebra (primarily groups and rings). No prerequisite knowledge of fields is required.
(6555 views)

by Henri Darmon, Shou-Wu Zhang - Cambridge University Press
This volume has the Gross-Zagier formula and its avatars as a common unifying theme. It covers the theory of complex multiplication, automorphic forms, the Rankin-Selberg method, arithmetic intersection theory, Iwasawa theory, and other topics.
(8736 views)

by Robert B. Ash - University of Illinois
Basic course in algebraic number theory. It covers the general theory of factorization of ideals in Dedekind domains, the use of Kummer’s theorem, the factorization of prime ideals in Galois extensions, local and global fields, etc.
(15347 views)