Logo

Lectures on Topics in Algebraic Number Theory

Small book cover: Lectures on Topics in Algebraic Number Theory

Lectures on Topics in Algebraic Number Theory
by

Publisher: Indian Institute of Technology, Bombay
Number of pages: 83

Description:
These lectures are aimed at giving a rapid introduction to some basic aspects of Algebraic Number Theory with as few prerequisites as possible. Topics: Field Extensions; Ring Extensions; Dedekind Domains and Ramification Theory; Class Number and Lattices.

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Heegner Points and Rankin L-SeriesHeegner Points and Rankin L-Series
by - Cambridge University Press
This volume has the Gross-Zagier formula and its avatars as a common unifying theme. It covers the theory of complex multiplication, automorphic forms, the Rankin-Selberg method, arithmetic intersection theory, Iwasawa theory, and other topics.
(5014 views)
Book cover: An Introduction to Algebraic Number TheoryAn Introduction to Algebraic Number Theory
by - Nanyang Technological University
Contents: Algebraic numbers and algebraic integers (Rings of integers, Norms and Traces); Ideals (Factorization and fractional ideals, The Chinese Theorem); Ramification theory; Ideal class group and units; p-adic numbers; Valuations; p-adic fields.
(5843 views)
Book cover: Lectures on Field Theory and Ramification TheoryLectures on Field Theory and Ramification Theory
by - Indian Institute of Technology, Bombay
These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.
(5455 views)
Book cover: Algebraic Number TheoryAlgebraic Number Theory
by
Contents: Preliminaries From Commutative Algebra; Rings of Integers; Dedekind Domains; Factorization; The Finiteness of the Class Number; The Unit Theorem; Cyclotomic Extensions; Fermat's Last Theorem; Valuations; Local Fields; Global Fields.
(9866 views)