**Lectures on Topics in Algebraic Number Theory**

by Sudhir R. Ghorpade

**Publisher**: Indian Institute of Technology, Bombay 2002**Number of pages**: 83

**Description**:

These lectures are aimed at giving a rapid introduction to some basic aspects of Algebraic Number Theory with as few prerequisites as possible. Topics: Field Extensions; Ring Extensions; Dedekind Domains and Ramification Theory; Class Number and Lattices.

Download or read it online here:

**Download link**

(1.5MB, PDF)

## Similar books

**Lectures on Siegel Modular Forms and Representation by Quadratic Forms**

by

**Y. Kitaoka**-

**Tata Institute of Fundamental Research**

This book is concerned with the problem of representation of positive definite quadratic forms by other such forms. From the table of contents: Preface; Fourier Coefficients of Siegel Modular Forms; Arithmetic of Quadratic Forms.

(

**2538**views)

**A Course In Algebraic Number Theory**

by

**Robert B. Ash**-

**University of Illinois**

Basic course in algebraic number theory. It covers the general theory of factorization of ideals in Dedekind domains, the use of Kummerâ€™s theorem, the factorization of prime ideals in Galois extensions, local and global fields, etc.

(

**9248**views)

**Lectures on Field Theory and Ramification Theory**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology, Bombay**

These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.

(

**4522**views)

**An Introduction to Algebraic Number Theory**

by

**F. Oggier**-

**Nanyang Technological University**

Contents: Algebraic numbers and algebraic integers (Rings of integers, Norms and Traces); Ideals (Factorization and fractional ideals, The Chinese Theorem); Ramification theory; Ideal class group and units; p-adic numbers; Valuations; p-adic fields.

(

**4835**views)