**Lectures on Topics in Algebraic Number Theory**

by Sudhir R. Ghorpade

**Publisher**: Indian Institute of Technology, Bombay 2002**Number of pages**: 83

**Description**:

These lectures are aimed at giving a rapid introduction to some basic aspects of Algebraic Number Theory with as few prerequisites as possible. Topics: Field Extensions; Ring Extensions; Dedekind Domains and Ramification Theory; Class Number and Lattices.

Download or read it online for free here:

**Download link**

(1.5MB, PDF)

## Similar books

**Complex Multiplication**

by

**J. S. Milne**

These are preliminary notes for a modern account of the theory of complex multiplication. The reader is expected to have a good knowledge of basic algebraic number theory, and basic algebraic geometry, including abelian varieties.

(

**5564**views)

**A Course In Algebraic Number Theory**

by

**Robert B. Ash**-

**University of Illinois**

Basic course in algebraic number theory. It covers the general theory of factorization of ideals in Dedekind domains, the use of Kummerâ€™s theorem, the factorization of prime ideals in Galois extensions, local and global fields, etc.

(

**9821**views)

**Lectures on Siegel Modular Forms and Representation by Quadratic Forms**

by

**Y. Kitaoka**-

**Tata Institute of Fundamental Research**

This book is concerned with the problem of representation of positive definite quadratic forms by other such forms. From the table of contents: Preface; Fourier Coefficients of Siegel Modular Forms; Arithmetic of Quadratic Forms.

(

**3233**views)

**Heegner Points and Rankin L-Series**

by

**Henri Darmon, Shou-Wu Zhang**-

**Cambridge University Press**

This volume has the Gross-Zagier formula and its avatars as a common unifying theme. It covers the theory of complex multiplication, automorphic forms, the Rankin-Selberg method, arithmetic intersection theory, Iwasawa theory, and other topics.

(

**4770**views)