**Group Theory: Birdtracks, Lie's, and Exceptional Groups**

by Predrag Cvitanovic

**Publisher**: Princeton University Press 2008**ISBN/ASIN**: 0691118361**ISBN-13**: 9780691118369**Number of pages**: 285

**Description**:

If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional.

Download or read it online for free here:

**Download link**

(6MB, PDF)

## Similar books

**Elements of Group Theory**

by

**F. J. Yndurain**-

**arXiv**

The following notes are the basis for a graduate course. They are oriented towards the application of group theory to particle physics, although some of it can be used for general quantum mechanics. They have no pretense of mathematical rigor.

(

**10853**views)

**Smarandache Semigroups**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

The Smarandache semigroups exhibit properties of both a group and a semigroup simultaneously. This book assumes the reader to have a good background on group theory; we give some recollection about groups and some of its properties for reference.

(

**5699**views)

**Group Theory**

by

**J. S. Milne**

Contents: Basic Definitions and Results; Free Groups and Presentations; Coxeter Groups; Automorphisms and Extensions; Groups Acting on Sets; The Sylow Theorems; Subnormal Series; Solvable and Nilpotent Groups; Representations of Finite Groups.

(

**8460**views)

**Algebraic Groups, Lie Groups, and their Arithmetic Subgroups**

by

**J. S. Milne**

This work is a modern exposition of the theory of algebraic group schemes, Lie groups, and their arithmetic subgroups. Algebraic groups are groups defined by polynomials. Those in this book can all be realized as groups of matrices.

(

**7623**views)