Introduction to Partial Differential Equations

Small book cover: Introduction to Partial Differential Equations

Introduction to Partial Differential Equations

Publisher: University of Oulu
Number of pages: 122

Contents: Preliminaries; Local Existence Theory; Fourier Series; One-dimensional Heat Equation; One-dimensional Wave Equation; Laplace Equation in Rectangle and in Disk; The Laplace Operator; The Dirichlet and Neumann Problems; Layer Potentials; The Heat Operator; The Wave Operator.

Download or read it online for free here:
Download link
(790KB, PDF)

Similar books

Book cover: Introduction to the Numerical Integration of PDEsIntroduction to the Numerical Integration of PDEs
by - University of Durham
In these notes, we describe the design of a small C++ program which solves numerically the sine-Gordon equation. The program is build progressively to make it multipurpose and easy to modify to solve any system of partial differential equations.
Book cover: Partial Differential Equations of Mathematical PhysicsPartial Differential Equations of Mathematical Physics
by - Rice University
This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics.
Book cover: The Place of Partial Differential Equations in Mathematical PhysicsThe Place of Partial Differential Equations in Mathematical Physics
by - Patna University
The reason for my choosing the partial differential equations as the subject for these lectures is my wish to inspire in my audience a love for Mathematics. I give a brief historical account of the application of Mathematics to natural phenomena.
Book cover: Lectures on Elliptic Partial Differential EquationsLectures on Elliptic Partial Differential Equations
by - Tata Institute of Fundamental Research
In these lectures we study the boundary value problems associated with elliptic equation by using essentially L2 estimates (or abstract analogues of such estimates). We consider only linear problem, and we do not study the Schauder estimates.