**Introduction to Partial Differential Equations**

by Valeriy Serov

**Publisher**: University of Oulu 2011**Number of pages**: 122

**Description**:

Contents: Preliminaries; Local Existence Theory; Fourier Series; One-dimensional Heat Equation; One-dimensional Wave Equation; Laplace Equation in Rectangle and in Disk; The Laplace Operator; The Dirichlet and Neumann Problems; Layer Potentials; The Heat Operator; The Wave Operator.

Download or read it online for free here:

**Download link**

(790KB, PDF)

## Similar books

**Exterior Differential Systems and Euler-Lagrange Partial Differential Equations**

by

**R. Bryant, P. Griffiths, D. Grossman**-

**University Of Chicago Press**

The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.

(

**16665**views)

**Introduction to the Method of Multiple Scales**

by

**Per Jakobsen**-

**arXiv**

These lecture notes give an introduction to perturbation method with main focus on the method of multiple scales as it applies to pulse propagation in nonlinear optics. Aimed at students that have little or no background in perturbation methods.

(

**6021**views)

**Partial Differential Equations**

by

**Erich Miersemann**-

**Leipzig University**

These lecture notes are intended as a straightforward introduction to partial differential equations which can serve as a textbook for undergraduate and beginning graduate students. Some material of the lecture notes was taken from some other books.

(

**10738**views)

**Lectures on Semi-group Theory and its Application to Cauchy's Problem in Partial Differential Equations**

by

**K. Yosida**-

**Tata Institute of Fundamental Research**

In these lectures, we shall be concerned with the differentiability and the representation of one-parameter semi-groups of bounded linear operators on a Banach space and their applications to the initial value problem for differential equations.

(

**11438**views)