**Homotopy Theories and Model Categories**

by W. G. Dwyer, J. Spalinski

**Publisher**: University of Notre Dame 1995**Number of pages**: 56

**Description**:

This paper is an introduction to the theory of model categories, which was developed by Quillen. We have tried to minimize the prerequisites needed for understanding this paper; it should be enough to have some familiarity with CW-complexes, with chain complexes, and with the basic terminology associated with categories.

Download or read it online for free here:

**Download link**

(420KB, PDF)

## Similar books

**Algebraic and Geometric Topology**

by

**Andrew Ranicki, Norman Levitt, Frank Quinn**-

**Springer**

The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.

(

**11964**views)

**Algebraic Topology**

by

**Allen Hatcher**-

**Cambridge University Press**

Introductory text suitable for use in a course or for self-study, it covers fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The geometric aspects of the subject are emphasized.

(

**31118**views)

**A Primer on Homotopy Colimits**

by

**Daniel Dugger**-

**University of Oregon**

This is an expository paper on homotopy colimits and homotopy limits. These are constructions which should arguably be in the toolkit of every modern algebraic topologist. Many proofs are avoided, or perhaps just sketched.

(

**6042**views)

**Lectures on Introduction to Algebraic Topology**

by

**G. de Rham**-

**Tata Institute of Fundamental Research**

These notes were intended as a first introduction to algebraic Topology. Contents: Definition and general properties of the fundamental group; Free products of groups and their quotients; On calculation of fundamental groups; and more.

(

**6108**views)