**Exterior Differential Systems**

by Robert L. Bryant, et al.

**Publisher**: MSRI 1991**ISBN/ASIN**: 1461397162**ISBN-13**: 9781461397168**Number of pages**: 406

**Description**:

An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. This book gives a treatment of exterior differential systems. It will include both the general theory and various applications.

Download or read it online for free here:

**Download link**

(2.7MB, PDF)

## Similar books

**Exterior Differential Systems and Euler-Lagrange Partial Differential Equations**

by

**R. Bryant, P. Griffiths, D. Grossman**-

**University Of Chicago Press**

The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.

(

**12873**views)

**Orthonormal Basis in Minkowski Space**

by

**Aleks Kleyn, Alexandre Laugier**-

**arXiv**

In this paper, we considered the definition of orthonormal basis in Minkowski space, the structure of metric tensor relative to orthonormal basis, procedure of orthogonalization. Contents: Preface; Minkowski Space; Examples of Minkowski Space.

(

**6337**views)

**Introduction to Evolution Equations in Geometry**

by

**Bianca Santoro**-

**arXiv**

The author aimed at providing a first introduction to the main general ideas on the study of the Ricci flow, as well as guiding the reader through the steps of Kaehler geometry for the understanding of the complex version of the Ricci flow.

(

**5961**views)

**Ricci Flow and the Poincare Conjecture**

by

**John Morgan, Gang Tian**-

**American Mathematical Society**

This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.

(

**8747**views)