**An Introduction to K-theory and Cyclic Cohomology**

by Jacek Brodzki

**Publisher**: arXiv 1996**Number of pages**: 115

**Description**:

These lecture notes contain an exposition of basic ideas of K-theory and cyclic cohomology. I begin with a list of examples of various situations in which the K-functor of Grothendieck appears naturally, including the rudiments of the topological and algebraic K-theory, K-theory of C*-algebras, and K-homology.

Download or read it online for free here:

**Download link**

(790KB, PDF)

## Similar books

**Lectures on Topics in Algebraic K-Theory**

by

**Hyman Bass**-

**Tata Institute of Fundamental Research**

Topics: The exact sequence of algebraic K-theory; Categories of modules and their equivalences; The Brauer group of a commutative ring; The Brauer-Wall group of graded Azumaya algebras; The structure of the Clifford Functor.

(

**5564**views)

**Algebraic K-Theory**

by

**Olivier Isely**-

**EPFL**

Algebraic K-theory is a branch of algebra dealing with linear algebra over a general ring A instead of over a field. Algebraic K-theory plays an important role in many subjects, especially number theory, algebraic topology and algebraic geometry.

(

**4223**views)

**An Introduction to K-theory**

by

**Eric M. Friedlander**

The author's objective was to provide participants of the Algebraic K-theory Summer School an overview of various aspects of algebraic K-theory, with the intention of making these lectures accessible with little or no prior knowledge of the subject.

(

**8140**views)

**The K-book: An introduction to algebraic K-theory**

by

**Charles Weibel**-

**Rutgers**

Algebraic K-theory is an important part of homological algebra. Contents: Projective Modules and Vector Bundles; The Grothendieck group K_0; K_1 and K_2 of a ring; Definitions of higher K-theory; The Fundamental Theorems of higher K-theory.

(

**8360**views)