Logo

Modular Forms, Hecke Operators, and Modular Abelian Varieties

Small book cover: Modular Forms, Hecke Operators, and Modular Abelian Varieties

Modular Forms, Hecke Operators, and Modular Abelian Varieties
by

Publisher: University of Washington
Number of pages: 154

Description:
Contents: The Main objects; Modular representations and algebraic curves; Modular Forms of Level 1; Analytic theory of modular curves; Modular Symbols; Modular Forms of Higher Level; Newforms and Euler Products; Hecke operators as correspondences; Abelian Varieties; Abelian Varieties Attached to Modular Forms; L-functions; The Birch and Swinnerton-Dyer Conjecture.

Home page url

Download or read it online for free here:
Download link
(880KB, PDF)

Similar books

Book cover: Harmonic Analysis, the Trace Formula, and Shimura VarietiesHarmonic Analysis, the Trace Formula, and Shimura Varieties
by - American Mathematical Society
The goal of this volume is to provide an entry point into the challenging field of the modern theory of automorphic forms. It is directed on the one hand at graduate students and professional mathematicians who would like to work in the area.
(12786 views)
Book cover: Predicative ArithmeticPredicative Arithmetic
by - Princeton Univ Pr
The book based on lecture notes of a course given at Princeton University in 1980. From the contents: the impredicativity of induction, the axioms of arithmetic, order, induction by relativization, the bounded least number principle, and more.
(17910 views)
Book cover: Geometry of Numbers with Applications to Number TheoryGeometry of Numbers with Applications to Number Theory
by - University of Georgia
The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart-Polynomial, Minkowski's Convex Body Theorems, Minkowski-Hlawka Theorem, ... -- and its applications to number theory.
(10119 views)
Book cover: Geometric Theorems and Arithmetic FunctionsGeometric Theorems and Arithmetic Functions
by - American Research Press
Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.
(18529 views)