**Modular Forms, Hecke Operators, and Modular Abelian Varieties**

by Kenneth A. Ribet, William A. Stein

**Publisher**: University of Washington 2003**Number of pages**: 154

**Description**:

Contents: The Main objects; Modular representations and algebraic curves; Modular Forms of Level 1; Analytic theory of modular curves; Modular Symbols; Modular Forms of Higher Level; Newforms and Euler Products; Hecke operators as correspondences; Abelian Varieties; Abelian Varieties Attached to Modular Forms; L-functions; The Birch and Swinnerton-Dyer Conjecture.

Download or read it online for free here:

**Download link**

(880KB, PDF)

## Similar books

**Elliptic Curves over Function Fields**

by

**Douglas Ulmer**-

**arXiv**

The focus is on elliptic curves over function fields over finite fields. We explain the main classical results on the Birch and Swinnerton-Dyer conjecture in this context and its connection to the Tate conjecture about divisors on surfaces.

(

**6614**views)

**Comments and topics on Smarandache notions and problems**

by

**Kenichiro Kashihara**-

**Erhus University Press**

An examination of some of the problems posed by Florentin Smarandache. The problems are from different areas, such as sequences, primes and other aspects of number theory. The problems are solved in the book, or the author raises new questions.

(

**7511**views)

**Harmonic Analysis, the Trace Formula, and Shimura Varieties**

by

**J. Arthur, D. Ellwood, R. Kottwitz**-

**American Mathematical Society**

The goal of this volume is to provide an entry point into the challenging field of the modern theory of automorphic forms. It is directed on the one hand at graduate students and professional mathematicians who would like to work in the area.

(

**6908**views)

**The Smarandache Function**

by

**C. Dumitrescu, V. Seleacu**-

**Erhus University Press**

The function in the title is originated from the Romanian mathematician Florentin Smarandache, who has significant contributions in mathematics and literature. This text introduces the Smarandache function and discusses its generalisations.

(

**6587**views)