Logo

Mirror Symmetry by Cumrun Vafa, Eric Zaslow

Large book cover: Mirror Symmetry

Mirror Symmetry
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821829556
ISBN-13: 9780821829554
Number of pages: 950

Description:
The aim of the book is to provide a pedagogical introduction to the field of mirror symmetry from both a mathematical and physical perspective. After covering the relevant background material, the main part of the monograph is devoted to the proof of mirror symmetry from various viewpoints. More advanced topics are also discussed. In particular, topological strings at higher genera and the notion of holomorphic anomaly.

Home page url

Download or read it online for free here:
Download link
(4.8MB, PDF)

Similar books

Book cover: Mixed MotivesMixed Motives
by - American Mathematical Society
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
(9484 views)
Book cover: Algebraic GeometryAlgebraic Geometry
by
These notes are an introduction to the theory of algebraic varieties. In contrast to most such accounts they study abstract algebraic varieties, not just subvarieties of affine and projective space. This approach leads naturally to scheme theory.
(9846 views)
Book cover: Lectures On Old And New Results On Algebraic CurvesLectures On Old And New Results On Algebraic Curves
by - Tata Institute Of Fundamental Research
The aim of this text is to give a proof, due to Hans Grauert, of an analogue of Mordell's conjecture. Contents: Introduction; Algebro-Geometric Background; Algebraic Curves; The Theorem of Grauert (Mordell's conjecture for function fields).
(4980 views)
Book cover: Strings and GeometryStrings and Geometry
by - American Mathematical Society
This volume highlights the interface between string theory and algebraic geometry. The topics covered include manifolds of special holonomy, supergravity, supersymmetry, D-branes, the McKay correspondence and the Fourier-Mukai transform.
(8028 views)