Logo

Analytic Number Theory: A Tribute to Gauss and Dirichlet

Large book cover: Analytic Number Theory: A Tribute to Gauss and Dirichlet

Analytic Number Theory: A Tribute to Gauss and Dirichlet
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821843079
ISBN-13: 9780821843079
Number of pages: 266

Description:
The volume begins with a definitive summary of the life and work of Dirichlet and continues with thirteen papers by leading experts on research topics of current interest in number theory that were directly influenced by Gauss and Dirichlet.

Home page url

Download or read it online for free here:
Download link
(2.6MB, PDF)

Similar books

Book cover: Diophantine AnalysisDiophantine Analysis
by - John Wiley & Sons
The author's purpose has been to supply the reader with a convenient introduction to Diophantine Analysis. No attempt has been made to include all special results, but a large number of them are to be found both in the text and in the exercises.
(7696 views)
Book cover: Lectures on Sieve Methods and Prime Number TheoryLectures on Sieve Methods and Prime Number Theory
by - Tata Institute of Fundamental Research
The aim of these lectures is to introduce the readers to the most fascinating aspects of the fruitful unifications of sieve methods and analytical means which made possible such deep developments in prime number theory ...
(4676 views)
Book cover: Lectures on Forms of Higher DegreeLectures on Forms of Higher Degree
by - Tata Institute of Fundamental Research
One of the principal objectives of modern number theory must be to develop the theory of forms of degree more than two,to the same satisfactory level in which the theory of quadratic forms is found today as the work of eminent mathematicians.
(5120 views)
Book cover: Lectures on a Method in the Theory of Exponential SumsLectures on a Method in the Theory of Exponential Sums
by - Tata Institute of Fundamental Research
The author presents a selfcontained introduction to summation and transformation formulae for exponential sums involving either the divisor function d(n) or the Fourier coefficients of a cusp form; these two cases are in fact closely analogous.
(4491 views)