Logo

Lectures on a Method in the Theory of Exponential Sums

Large book cover: Lectures on a Method in the Theory of Exponential Sums

Lectures on a Method in the Theory of Exponential Sums
by

Publisher: Tata Institute of Fundamental Research
ISBN/ASIN: 3540183663
ISBN-13: 9783540183662
Number of pages: 134

Description:
It was my first object to present a selfcontained introduction to summation and transformation formulae for exponential sums involving either the divisor function d(n) or the Fourier coefficients of a cusp form; these two cases are in fact closely analogous. Secondly, I wished to show how these formulae can be applied to the estimation of the exponential sums in question.

Download or read it online for free here:
Download link
(750KB, PDF)

Similar books

Book cover: Lectures on Sieve MethodsLectures on Sieve Methods
by - Tata Institute of Fundamental Research
The aim of this text is to provide an introduction to modern sieve methods, i.e. to various forms of both the large sieve (part I of the book) and the small sieve (part II), as well as their interconnections and applications.
(4813 views)
Book cover: Lectures on Forms of Higher DegreeLectures on Forms of Higher Degree
by - Tata Institute of Fundamental Research
One of the principal objectives of modern number theory must be to develop the theory of forms of degree more than two,to the same satisfactory level in which the theory of quadratic forms is found today as the work of eminent mathematicians.
(5104 views)
Book cover: Lectures on Sieve Methods and Prime Number TheoryLectures on Sieve Methods and Prime Number Theory
by - Tata Institute of Fundamental Research
The aim of these lectures is to introduce the readers to the most fascinating aspects of the fruitful unifications of sieve methods and analytical means which made possible such deep developments in prime number theory ...
(4664 views)
Book cover: Distribution of Prime NumbersDistribution of Prime Numbers
by - Macquarie University
These notes were used by the author at Imperial College, University of London. The contents: arithmetic functions, elementary prime number theory, Dirichlet series, primes in arithmetic progressions, prime number theorem, Riemann zeta function.
(8713 views)