Logo

Lectures on a Method in the Theory of Exponential Sums

Large book cover: Lectures on a Method in the Theory of Exponential Sums

Lectures on a Method in the Theory of Exponential Sums
by

Publisher: Tata Institute of Fundamental Research
ISBN/ASIN: 3540183663
ISBN-13: 9783540183662
Number of pages: 134

Description:
It was my first object to present a selfcontained introduction to summation and transformation formulae for exponential sums involving either the divisor function d(n) or the Fourier coefficients of a cusp form; these two cases are in fact closely analogous. Secondly, I wished to show how these formulae can be applied to the estimation of the exponential sums in question.

Download or read it online for free here:
Download link
(750KB, PDF)

Similar books

Book cover: Lectures on Analytic Number TheoryLectures on Analytic Number Theory
by - Tata Institute of Fundamental Research
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. Contents: Formal Power Series; Analysis; Analytic theory of partitions; Representation by squares.
(3339 views)
Book cover: Lectures on Sieve MethodsLectures on Sieve Methods
by - Tata Institute of Fundamental Research
The aim of this text is to provide an introduction to modern sieve methods, i.e. to various forms of both the large sieve (part I of the book) and the small sieve (part II), as well as their interconnections and applications.
(4156 views)
Book cover: Introduction to Analytic Number TheoryIntroduction to Analytic Number Theory
by - University of Illinois
Contents: Primes and the Fundamental Theorem of Arithmetic; Arithmetic functions (Elementary theory, Asymptotic estimates, Dirichlet series and Euler products); Distribution of primes; Primes in arithmetic progressions - Dirichlet's Theorem.
(5833 views)
Book cover: Analytic Number TheoryAnalytic Number Theory
by - viXra
The aim of this paper is to present some topics in analytic number theory: classical results in prime number theory, the Dirichlet's theorem on primes in arithmetic progressions, the analytic proof of the prime number theorem by D. J. Newman, etc.
(2555 views)