Logo

Lectures on a Method in the Theory of Exponential Sums

Large book cover: Lectures on a Method in the Theory of Exponential Sums

Lectures on a Method in the Theory of Exponential Sums
by

Publisher: Tata Institute of Fundamental Research
ISBN/ASIN: 3540183663
ISBN-13: 9783540183662
Number of pages: 134

Description:
It was my first object to present a selfcontained introduction to summation and transformation formulae for exponential sums involving either the divisor function d(n) or the Fourier coefficients of a cusp form; these two cases are in fact closely analogous. Secondly, I wished to show how these formulae can be applied to the estimation of the exponential sums in question.

Download or read it online for free here:
Download link
(750KB, PDF)

Similar books

Book cover: Lectures on Sieve Methods and Prime Number TheoryLectures on Sieve Methods and Prime Number Theory
by - Tata Institute of Fundamental Research
The aim of these lectures is to introduce the readers to the most fascinating aspects of the fruitful unifications of sieve methods and analytical means which made possible such deep developments in prime number theory ...
(4977 views)
Book cover: Analytic Number Theory: A Tribute to Gauss and DirichletAnalytic Number Theory: A Tribute to Gauss and Dirichlet
by - American Mathematical Society
The volume begins with a definitive summary of the life and work of Dirichlet and continues with thirteen papers by leading experts on research topics of current interest in number theory that were directly influenced by Gauss and Dirichlet.
(7649 views)
Book cover: Lectures on Forms of Higher DegreeLectures on Forms of Higher Degree
by - Tata Institute of Fundamental Research
One of the principal objectives of modern number theory must be to develop the theory of forms of degree more than two,to the same satisfactory level in which the theory of quadratic forms is found today as the work of eminent mathematicians.
(5419 views)
Book cover: Diophantine AnalysisDiophantine Analysis
by - John Wiley & Sons
The author's purpose has been to supply the reader with a convenient introduction to Diophantine Analysis. No attempt has been made to include all special results, but a large number of them are to be found both in the text and in the exercises.
(8015 views)