**Lectures on a Method in the Theory of Exponential Sums**

by M. Jutila

**Publisher**: Tata Institute of Fundamental Research 1987**ISBN/ASIN**: 3540183663**ISBN-13**: 9783540183662**Number of pages**: 134

**Description**:

It was my first object to present a selfcontained introduction to summation and transformation formulae for exponential sums involving either the divisor function d(n) or the Fourier coefficients of a cusp form; these two cases are in fact closely analogous. Secondly, I wished to show how these formulae can be applied to the estimation of the exponential sums in question.

Download or read it online for free here:

**Download link**

(750KB, PDF)

## Similar books

**Introduction to Analytic Number Theory**

by

**A.J. Hildebrand**-

**University of Illinois**

Contents: Primes and the Fundamental Theorem of Arithmetic; Arithmetic functions (Elementary theory, Asymptotic estimates, Dirichlet series and Euler products); Distribution of primes; Primes in arithmetic progressions - Dirichlet's Theorem.

(

**7487**views)

**Lectures on Analytic Number Theory**

by

**H. Rademacher**-

**Tata Institute of Fundamental Research**

In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. Contents: Formal Power Series; Analysis; Analytic theory of partitions; Representation by squares.

(

**4653**views)

**Lectures on Forms of Higher Degree**

by

**J.I. Igusa**-

**Tata Institute of Fundamental Research**

One of the principal objectives of modern number theory must be to develop the theory of forms of degree more than two,to the same satisfactory level in which the theory of quadratic forms is found today as the work of eminent mathematicians.

(

**5668**views)

**Analytic Number Theory: A Tribute to Gauss and Dirichlet**

by

**William Duke, Yuri Tschinkel**-

**American Mathematical Society**

The volume begins with a definitive summary of the life and work of Dirichlet and continues with thirteen papers by leading experts on research topics of current interest in number theory that were directly influenced by Gauss and Dirichlet.

(

**7939**views)