Manifolds and Differential Forms
by Reyer Sjamaar
Publisher: Cornell University 2017
Number of pages: 171
Description:
The course covers manifolds and differential forms for an audience of undergraduates who have taken a typical calculus sequence at a North American university, including basic linear algebra and multivariable calculus up to the integral theorems of Green, Gauss and Stokes.
Download or read it online for free here:
Download link
(2.7MB, PDF)
Similar books
Topology and Physics: A Historical Essay
by C. Nash - arXiv
In this essay we wish to embark on the telling of a story which, almost certainly, stands only at its beginning. We shall discuss the links and the interaction between one very old subject, physics, and a much newer one, topology.
(14518 views)
by C. Nash - arXiv
In this essay we wish to embark on the telling of a story which, almost certainly, stands only at its beginning. We shall discuss the links and the interaction between one very old subject, physics, and a much newer one, topology.
(14518 views)
The Convenient Setting of Global Analysis
by Andreas Kriegl, Peter W. Michor - American Mathematical Society
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.
(13932 views)
by Andreas Kriegl, Peter W. Michor - American Mathematical Society
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.
(13932 views)
Manifolds
by Neil Lambert - King's College London
From the table of contents: Manifolds (Elementary Topology and Definitions); The Tangent Space; Maps Between Manifolds; Vector Fields; Tensors; Differential Forms; Connections, Curvature and Metrics; Riemannian Manifolds.
(10241 views)
by Neil Lambert - King's College London
From the table of contents: Manifolds (Elementary Topology and Definitions); The Tangent Space; Maps Between Manifolds; Vector Fields; Tensors; Differential Forms; Connections, Curvature and Metrics; Riemannian Manifolds.
(10241 views)
Noncommutative Localization in Algebra and Topology
by Andrew Ranicki - Cambridge University Press
Noncommutative localization is a technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. The applications to topology are via the noncommutative localizations of the fundamental group rings.
(9725 views)
by Andrew Ranicki - Cambridge University Press
Noncommutative localization is a technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. The applications to topology are via the noncommutative localizations of the fundamental group rings.
(9725 views)