Logo

Quantum Theory of Large Systems of Non-Relativistic Matter

Small book cover: Quantum Theory of Large Systems of Non-Relativistic Matter

Quantum Theory of Large Systems of Non-Relativistic Matter
by

Publisher: arXiv
Number of pages: 145

Description:
Contents: The Pauli Equation and its Symmetries; Gauge Invariance in Non-Relativistic Quantum Many-Particle Systems; Some Key Effects Related to the U(1)xSU(2) Gauge Invariance of Non-Relativistic Quantum Mechanics; Scaling Limit of the Effective Action of Fermi Systems, and Classification of States of Non-Relativistic Matter; Scaling Limit of the Effective Action of a Two -Dimensional, Incompressible Quantum Fluid; etc.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Optical Microscopy of Soft Matter SystemsOptical Microscopy of Soft Matter Systems
by - arXiv
The aim of this text is to introduce a variety of optical microscopy techniques available to soft matter researchers, starting from basic principles and finishing with a discussion of the most advanced microscopy systems.
(4351 views)
Book cover: Many-body Physics with Ultracold GasesMany-body Physics with Ultracold Gases
by - arXiv.org
This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, etc.
(1475 views)
Book cover: Making, probing and understanding ultracold Fermi gasesMaking, probing and understanding ultracold Fermi gases
by - arXiv
This text summarizes the experimental frontier of ultra cold fermionic gases. It is based on three lectures which one of the authors gave at the Varenna summer school describing the experimental techniques used to study ultracold fermionic gases.
(2987 views)
Book cover: A Primer on Quantum FluidsA Primer on Quantum Fluids
by - Springer
This book introduces the theoretical description of quantum fluids. The focus is on gaseous atomic Bose-Einstein condensates and, to a minor extent, superfluid helium, but the underlying concepts are relevant to other forms of quantum fluids.
(1648 views)