Lectures on Differential Geometry
by John Douglas Moore
Publisher: University of California 2009
Number of pages: 263
Description:
This course will describe the foundations of Riemannian geometry, including geodesics and curvature, as well as connections in vector bundles, and then go on to discuss the relationships between curvature and topology. Topology will presented in two dual contrasting forms, de Rham cohomology and Morse homology.
Download or read it online for free here:
Download link
(1MB, PDF)
Similar books

by Curtis McMullen - Harvard University
This course will concern the interaction between: hyperbolic geometry in dimensions 2 and 3, the dynamics of iterated rational maps, and the theory of Riemann surfaces and their deformations. Intended for advanced graduate students.
(13925 views)

by Shlomo Sternberg
Course notes for an introduction to Riemannian geometry and its principal physical application, Einstein’s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.
(17856 views)

by Subenoy Chakraborty - arXiv.org
These notes will be helpful to undergraduate and postgraduate students in theoretical physics and in applied mathematics. Modern terminology in differential geometry has been discussed in the book with the motivation of geometrical way of thinking.
(2458 views)

by Bang-Yen Chen - arXiv
Submanifold theory is a very active vast research field which plays an important role in the development of modern differential geometry. In this book, the author provides a broad review of Riemannian submanifolds in differential geometry.
(6663 views)