Logo

Lectures on Differential Geometry

Small book cover: Lectures on Differential Geometry

Lectures on Differential Geometry
by

Publisher: University of California
Number of pages: 263

Description:
This course will describe the foundations of Riemannian geometry, including geodesics and curvature, as well as connections in vector bundles, and then go on to discuss the relationships between curvature and topology. Topology will presented in two dual contrasting forms, de Rham cohomology and Morse homology.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Lectures on Geodesics in Riemannian GeometryLectures on Geodesics in Riemannian Geometry
by - Tata Institute of Fundamental Research
The main topic of these notes is geodesics. Our aim is to give a fairly complete treatment of the foundations of Riemannian geometry and to give global results for Riemannian manifolds which are subject to geometric conditions of various types.
(4840 views)
Book cover: Complex Analysis on Riemann SurfacesComplex Analysis on Riemann Surfaces
by - Harvard University
Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.
(9210 views)
Book cover: An Introduction to Riemannian GeometryAn Introduction to Riemannian Geometry
by - Lund University
The main purpose of these lecture notes is to introduce the beautiful theory of Riemannian Geometry. Of special interest are the classical Lie groups allowing concrete calculations of many of the abstract notions on the menu.
(9462 views)
Book cover: Holonomy Groups in Riemannian GeometryHolonomy Groups in Riemannian Geometry
by - arXiv
The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.
(4238 views)