**Lectures on Differential Geometry**

by John Douglas Moore

**Publisher**: University of California 2009**Number of pages**: 263

**Description**:

This course will describe the foundations of Riemannian geometry, including geodesics and curvature, as well as connections in vector bundles, and then go on to discuss the relationships between curvature and topology. Topology will presented in two dual contrasting forms, de Rham cohomology and Morse homology.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**Riemann Surfaces, Dynamics and Geometry**

by

**Curtis McMullen**-

**Harvard University**

This course will concern the interaction between: hyperbolic geometry in dimensions 2 and 3, the dynamics of iterated rational maps, and the theory of Riemann surfaces and their deformations. Intended for advanced graduate students.

(

**13925**views)

**Semi-Riemann Geometry and General Relativity**

by

**Shlomo Sternberg**

Course notes for an introduction to Riemannian geometry and its principal physical application, Einsteinâ€™s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.

(

**17856**views)

**Treatise on Differential Geometry and its role in Relativity Theory**

by

**Subenoy Chakraborty**-

**arXiv.org**

These notes will be helpful to undergraduate and postgraduate students in theoretical physics and in applied mathematics. Modern terminology in differential geometry has been discussed in the book with the motivation of geometrical way of thinking.

(

**2458**views)

**Riemannian Submanifolds: A Survey**

by

**Bang-Yen Chen**-

**arXiv**

Submanifold theory is a very active vast research field which plays an important role in the development of modern differential geometry. In this book, the author provides a broad review of Riemannian submanifolds in differential geometry.

(

**6663**views)