Introduction to Partial Differential Equations
by John Douglas Moore
Publisher: UCSB 2003
Number of pages: 169
Description:
Our goal here is to develop the most basic ideas from the theory of partial differential equations, and apply them to the simplest models arising from physics. In particular, we will present some of the elegant mathematics that can be used to describe the vibrating circular membrane.
Download or read it online for free here:
Download link
(2.7MB, PDF)
Similar books

by William W. Symes - Rice University
This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics.
(15053 views)

by Semyon Dyatlov, Maciej Zworski - MIT
Contents: Scattering resonances in dimension one; Resonances for potentials in odd dimensions; Black box scattering in Rn; The method of complex scaling; Perturbation theory for resonances; Resolvent estimates in semiclassical scattering; etc.
(9966 views)

by G.B. Folland - Tata Institute of Fundamental Research
The purpose of this course was to introduce students to the applications of Fourier analysis -- by which I mean the study of convolution operators as well as the Fourier transform itself -- to partial differential equations.
(8768 views)

by Vicentiu Radulescu - arXiv
This textbook provides the background which is necessary to initiate work on a Ph.D. thesis in Applied Nonlinear Analysis. The purpose is to provide a broad perspective in the subject. The level is aimed at beginning graduate students.
(9375 views)