Logo

Lecture Notes on Seiberg-Witten Invariants

Large book cover: Lecture Notes on Seiberg-Witten Invariants

Lecture Notes on Seiberg-Witten Invariants
by

Publisher: Springer
ISBN/ASIN: 3540412212
ISBN-13: 9783540412212
Number of pages: 130

Description:
This book gives a streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure, and that others have no smooth structure at all. This topic provides an excellent example of how global analysis techniques, which have been developed to study nonlinear partial differential equations, can be applied to the solution of interesting geometrical problems.

Home page url

Download or read it online for free here:
Download link
(550KB, PDF)

Similar books

Book cover: TopologyTopology
by - Harvard University
Contents: Introduction; Background in set theory; Topology; Connected spaces; Compact spaces; Metric spaces; Normal spaces; Algebraic topology and homotopy theory; Categories and paths; Path lifting and covering spaces; Global topology; etc.
(3543 views)
Book cover: Floer Homology, Gauge Theory, and Low Dimensional TopologyFloer Homology, Gauge Theory, and Low Dimensional Topology
by - American Mathematical Society
Mathematical gauge theory studies connections on principal bundles. The book provides an introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.
(8557 views)
Book cover: The Convenient Setting of Global AnalysisThe Convenient Setting of Global Analysis
by - American Mathematical Society
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.
(9466 views)
Book cover: ManifoldsManifolds
by - King's College London
From the table of contents: Manifolds (Elementary Topology and Definitions); The Tangent Space; Maps Between Manifolds; Vector Fields; Tensors; Differential Forms; Connections, Curvature and Metrics; Riemannian Manifolds.
(5846 views)