Logo

Lecture Notes on Seiberg-Witten Invariants

Large book cover: Lecture Notes on Seiberg-Witten Invariants

Lecture Notes on Seiberg-Witten Invariants
by

Publisher: Springer
ISBN/ASIN: 3540412212
ISBN-13: 9783540412212
Number of pages: 130

Description:
This book gives a streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure, and that others have no smooth structure at all. This topic provides an excellent example of how global analysis techniques, which have been developed to study nonlinear partial differential equations, can be applied to the solution of interesting geometrical problems.

Home page url

Download or read it online for free here:
Download link
(550KB, PDF)

Similar books

Book cover: Special Course in Functional Analysis: (Non-)Commutative TopologySpecial Course in Functional Analysis: (Non-)Commutative Topology
by - Aalto TKK
In this book you will learn something about functional analytic framework of topology. And you will get an access to more advanced literature on non-commutative geometry, a quite recent topic in mathematics and mathematical physics.
(7372 views)
Book cover: TopologyTopology
by - Harvard University
Contents: Introduction; Background in set theory; Topology; Connected spaces; Compact spaces; Metric spaces; Normal spaces; Algebraic topology and homotopy theory; Categories and paths; Path lifting and covering spaces; Global topology; etc.
(3674 views)
Book cover: Manifolds and Differential FormsManifolds and Differential Forms
by - Cornell University
The text covers manifolds and differential forms for an audience of undergraduates who have taken a typical calculus sequence, including basic linear algebra and multivariable calculus up to the integral theorems of Green, Gauss and Stokes.
(8573 views)
Book cover: Exact Sequences in the Algebraic Theory of SurgeryExact Sequences in the Algebraic Theory of Surgery
by - Princeton University Press
One of the principal aims of surgery theory is to classify the homotopy types of manifolds using tools from algebra and topology. The algebraic approach is emphasized in this book, and it gives the reader a good overview of the subject.
(6099 views)