Logo

Lectures On Levi Convexity Of Complex Manifolds And Cohomology Vanishing Theorems

Small book cover: Lectures On Levi Convexity Of Complex Manifolds And Cohomology Vanishing Theorems

Lectures On Levi Convexity Of Complex Manifolds And Cohomology Vanishing Theorems
by

Publisher: Tata Institute Of Fundamental Research
ISBN/ASIN: B0006C27TO
Number of pages: 114

Description:
These are notes of lectures which the author gave at the Tata Institute of Fundamental Research in the Winter 1965. Topics: Vanishing theorems for hermitian manifolds; W-ellipticity on Riemannian manifolds; Local expressions for and the main inequality; Vanishing Theorems.

Download or read it online for free here:
Download link
(540KB, PDF)

Similar books

Book cover: Complex Manifolds and Hermitian Differential GeometryComplex Manifolds and Hermitian Differential Geometry
by - University of Toronto
The intent is not to give a thorough treatment of the algebraic and differential geometry of complex manifolds, but to introduce the reader to material of current interest as quickly as possible. A number of interesting examples is provided.
(6634 views)
Book cover: Differential Geometry of Indefinite Complex Submanifolds in Indefinite Complex Space FormsDifferential Geometry of Indefinite Complex Submanifolds in Indefinite Complex Space Forms
by
From the table of contents: Chapter 1. Linear preliminaries; Chapter 2. Indefinite Kaehler manifolds; Chapter 3. Complex hypersurfaces; Chapter 4. Complex submanifolds; Chapter 5. Totally real bisectional curvature; and more.
(3652 views)
Book cover: Kähler-Einstein metrics: Old and NewKähler-Einstein metrics: Old and New
by - arXiv.org
We present classical and recent results on Kaehler-Einstein metrics on compact complex manifolds, focusing on existence, obstructions and relations to algebraic geometric notions of stability (K-stability). These are the notes for author's course.
(820 views)
Book cover: Lectures on Complex Analytic ManifoldsLectures on Complex Analytic Manifolds
by - Tata Institute of Fundamental Research
Topics covered: Differentiable Manifolds; C maps, diffeomorphisms. Effect of a map; The Tensor Bundles; Existence and uniqueness of the exterior differentiation; Manifolds with boundary; Integration on chains; Some examples of currents; etc.
(6231 views)