**Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations**

by Horst R. Beyer

**Publisher**: arXiv 2011**Number of pages**: 275

**Description**:

This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems. Throughout the course applications to problems from current relativistic (hyperbolic) physics are provided, which display the potential of semigroup methods in the solution of current research problems in physics.

Download or read it online for free here:

**Download link**

(2MB, PDF)

## Similar books

**Computational Mathematics for Differential Equations**

by

**N. V. Kopchenova, I. A. Maron**

This is a manual on solving problems in computational mathematics. The book is intended primarily for engineering students, but may also prove useful for economics students, graduate engineers, and postgraduate students in the applied sciences.

(

**17747**views)

**Topics in dynamics I: Flows**

by

**Edward Nelson**-

**Princeton University Press**

Lecture notes for a course on differential equations covering differential calculus, Picard's method, local structure of vector fields, sums and Lie products, self-adjoint operators on Hilbert space, commutative multiplicity theory, and more.

(

**19662**views)

**Techniques of Applied Mathematics**

by

**Andrew Fowler**-

**University of Oxford**

This course develops mathematical techniques which are useful in solving 'real-world' problems involving differential equations. The course embraces the ethos of mathematical modelling, and aims to show in a practical way how equations 'work'.

(

**12265**views)

**Mathematical Physics II**

by

**Boris Dubrovin**-

**SISSA**

These are lecture notes on various topics in analytic theory of differential equations: Singular points of solutions to analytic differential equations; Monodromy of linear differential operators with rational coefficients.

(

**16138**views)